

Spatio-Temporal Self-Supervised Learning for Traffic Flow Prediction

Jiahao Ji¹, Jingyuan Wang^{1,2,3*}, Chao Huang⁴, Junjie Wu³, Boren Xu¹, Zhenhe Wu¹, Junbo Zhang^{5,6}, Yu Zheng^{5,6}

¹School of Computer Science & Engineering, Beihang University, China
²Peng Cheng Laboratory, China ³School of Economics & Management, Beihang University, China
⁴Department of Computer Science, Musketeers Foundation Institute of Data Science, University of Hong Kong, China
⁵JD Intelligent Cities Research, Beijing, China ⁶JD iCity, JD Technology, Beijing, China

Robust Traffic Flow Prediction

• Importance: Crucial for advancing Intelligent Transportation System (ITS)

Mitigate tragedies caused by sudden flow spike

Enable effective traffic controls in time

Robust Traffic Flow Prediction

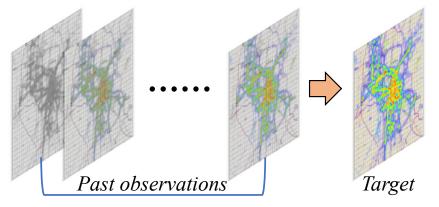
• Importance: Crucial for advancing Intelligent Transportation System

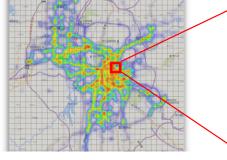
Mitigate tragedies caused by sudden flow spike

Enable effective traffic controls in time

Outflow

- Traffic flow prediction
 - Forecasting the future traffic volume from past traffic observations





Citywide traffic volume at a given time

 r_1

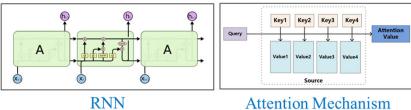
r2

Challenges

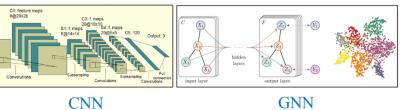
• Existing methods focus on modeling spatio-temporal (ST) correlations

Input 32x32

• Temporal modeling (closeness, period, trend)

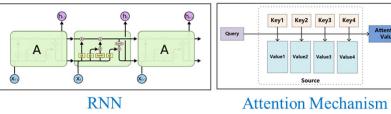


• Spatial modeling



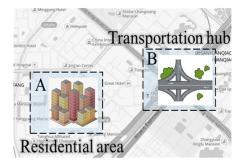
Challenges

- Existing methods focus on modeling spatio-temporal (ST) correlations
- Temporal modeling (closeness, period, trend)

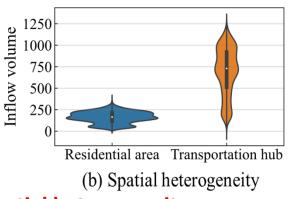


• Two main limitations:

Spatial heterogeneity



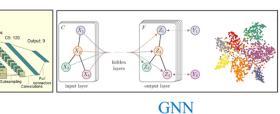
(a) Regions with different functions



Ignorance of spatial heterogeneity

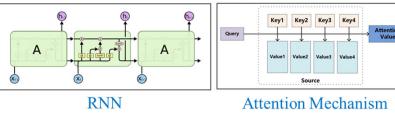
• Spatial modeling

CNN



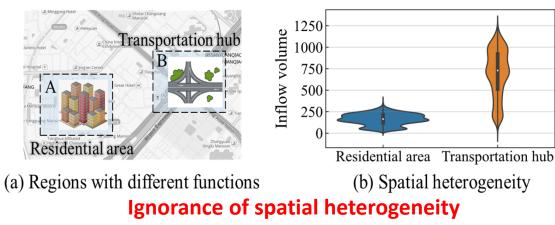
Challenges

- Existing methods focus on modeling spatio-temporal (ST) correlations
- Temporal modeling (closeness, period, trend)

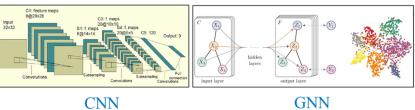


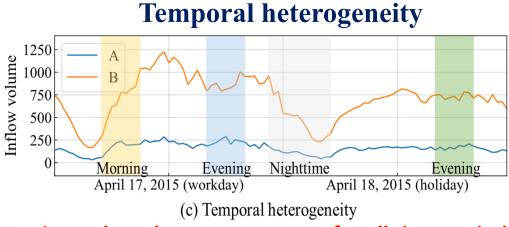
• Two main limitations

Spatial heterogeneity



• Spatial modeling

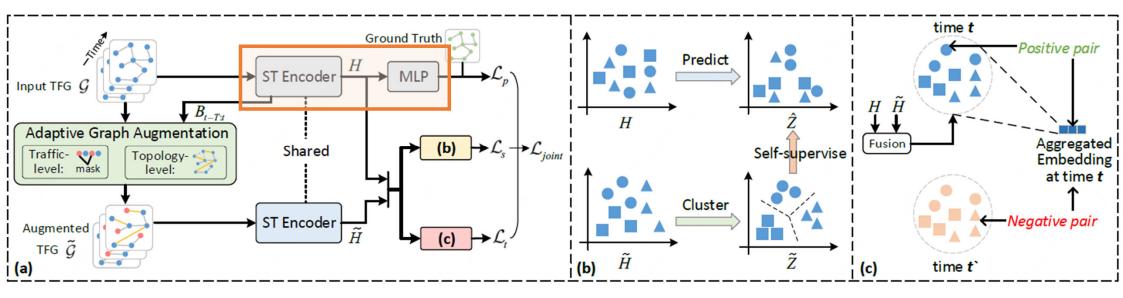




Using a shared parameter space for all time periods

Spatio-Temporal Self-Supervised Learning

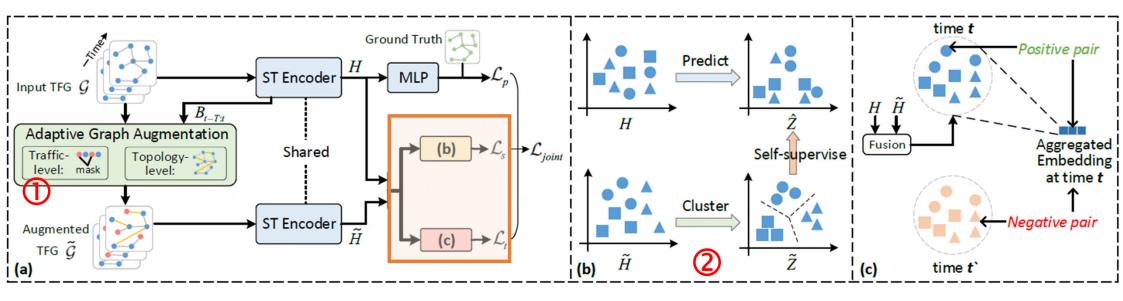
Spatio-Temporal Self-Supervised Learning (ST-SSL) for robust traffic prediction



• ST Encoder: encoding spatial-temporal traffic patterns into embeddings H

Spatio-Temporal Self-Supervised Learning

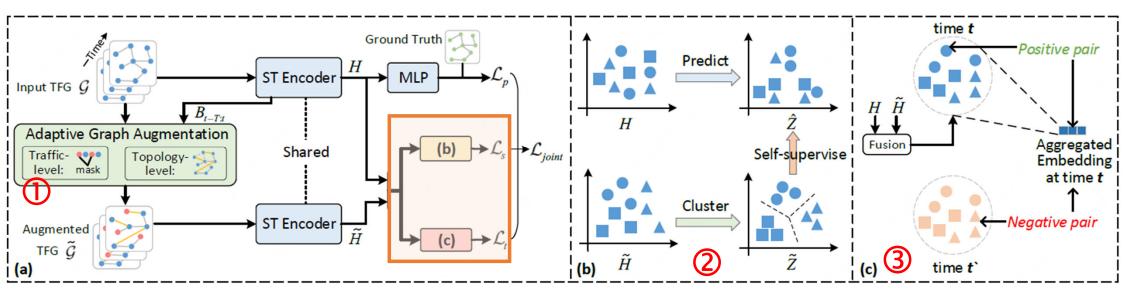
Spatio-Temporal Self-Supervised Learning (ST-SSL) for robust traffic prediction



- ST Encoder: encoding spatial-temporal traffic patterns into embeddings H
- SSL for Spatial heterogeneity modeling (b):
 - Adaptive graph augmentation on traffic flow graph \bigcirc
 - Soft clustering-based *predictive* SSL task

Spatio-Temporal Self-Supervised Learning

Spatio-Temporal Self-Supervised Learning (ST-SSL) for robust traffic prediction



- ST Encoder: encoding spatial-temporal traffic patterns into embeddings H
- SSL for Spatial heterogeneity modeling (b):
 - Adaptive graph augmentation on traffic flow graph \bigcirc
 - Soft clustering-based *predictive* SSL task
- SSL for Temporal heterogeneity modeling (c): time-aware *contrastive* SSL task ③

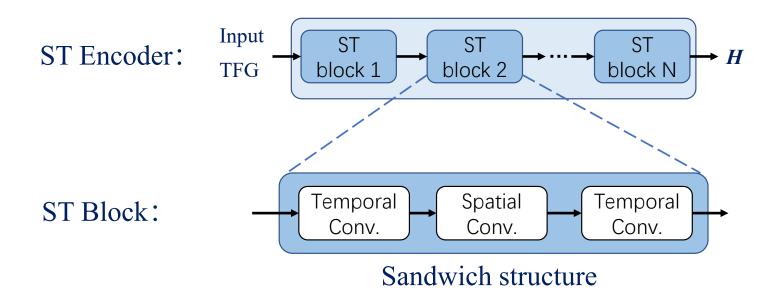
- Goal: encoding spatial-temporal traffic patterns into the embedding H
 - It can be any spatio-temporal prediction model

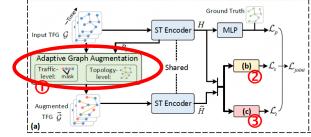
- Goal: encoding spatial-temporal traffic patterns into the embedding H
 - It can be any spatio-temporal prediction model
- We choose the effective STGCN-like structure as our ST encoder:

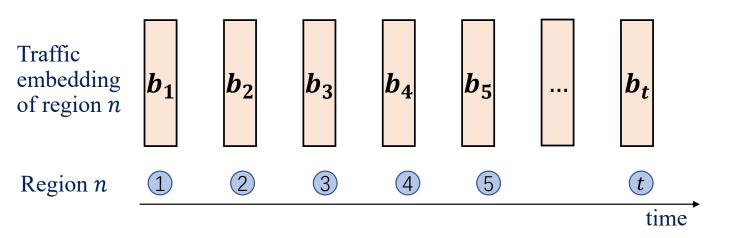
ST Encoder:
$$Input$$

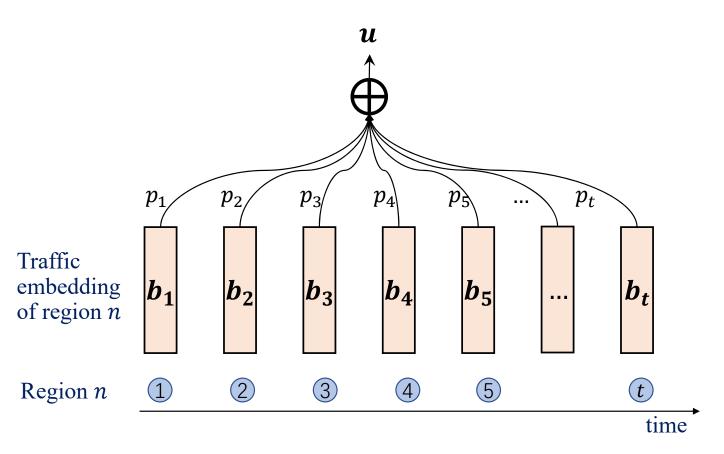
TFG \longrightarrow ST \longrightarrow ST
block 1 \longrightarrow $block 2$ \longrightarrow $block N$ \longrightarrow H

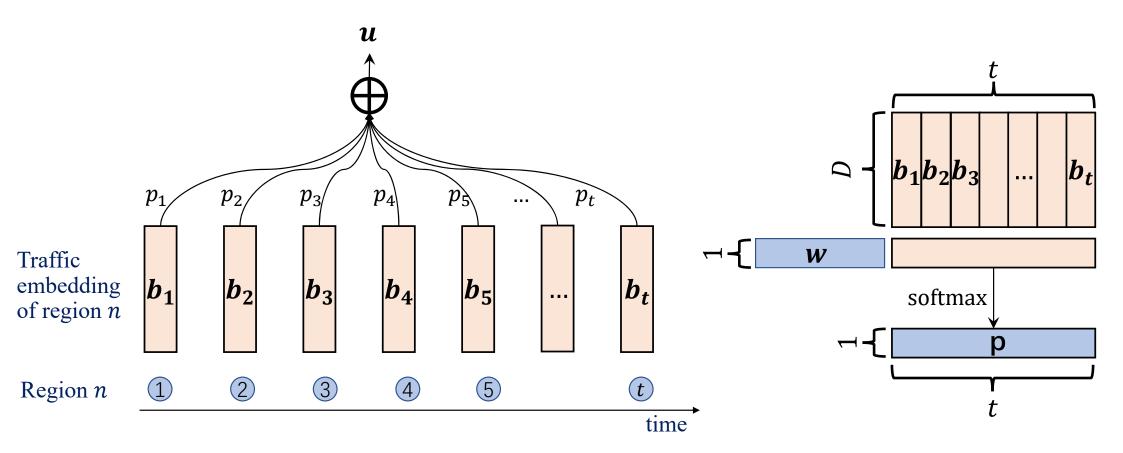
- Goal: encoding spatial-temporal traffic patterns into the embedding H
 - It can be any spatio-temporal prediction model
- We choose the effective STGCN-like structure as our ST encoder:

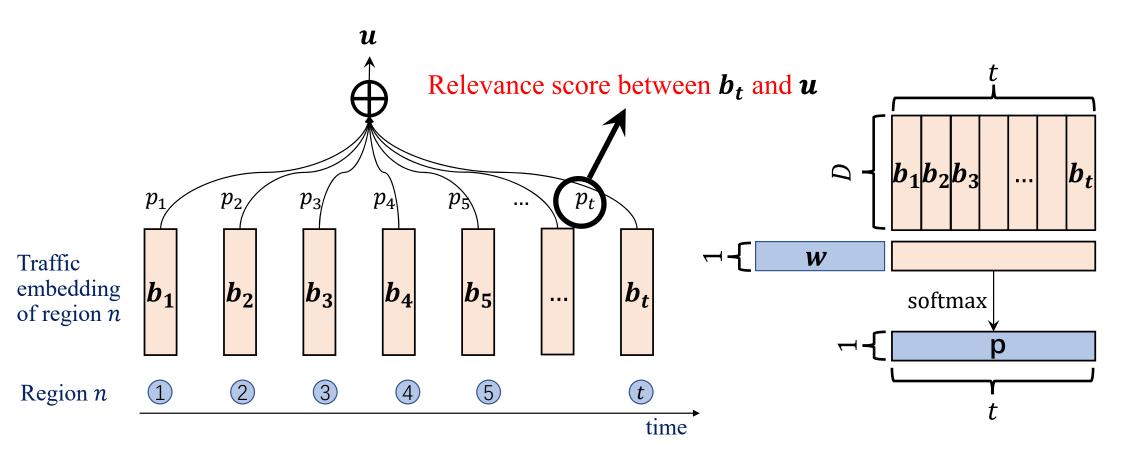


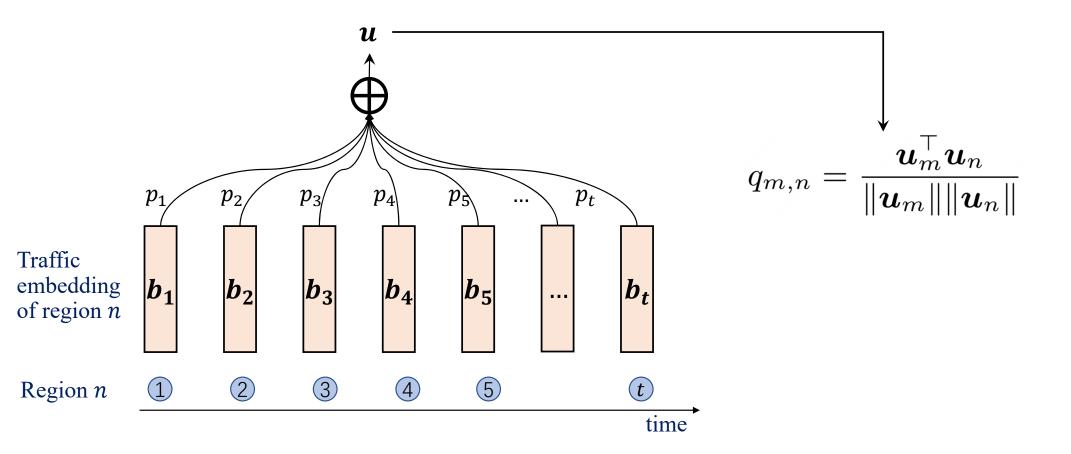


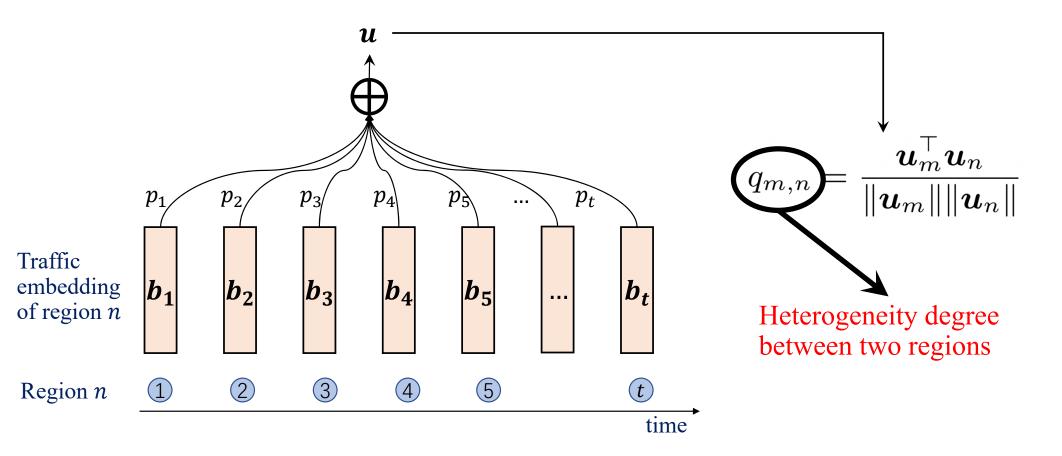


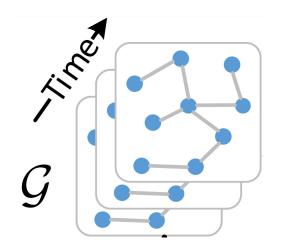


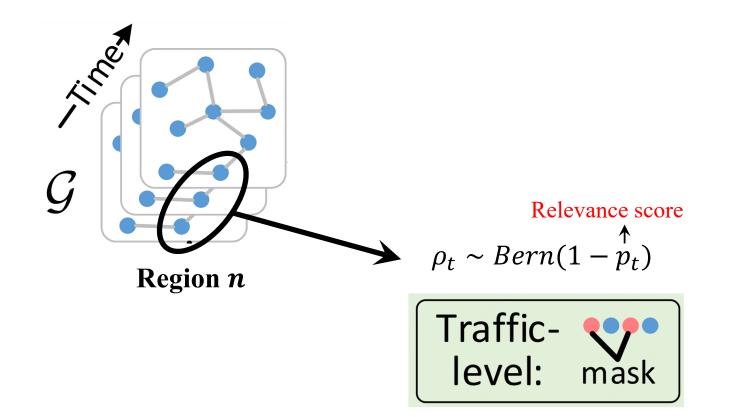


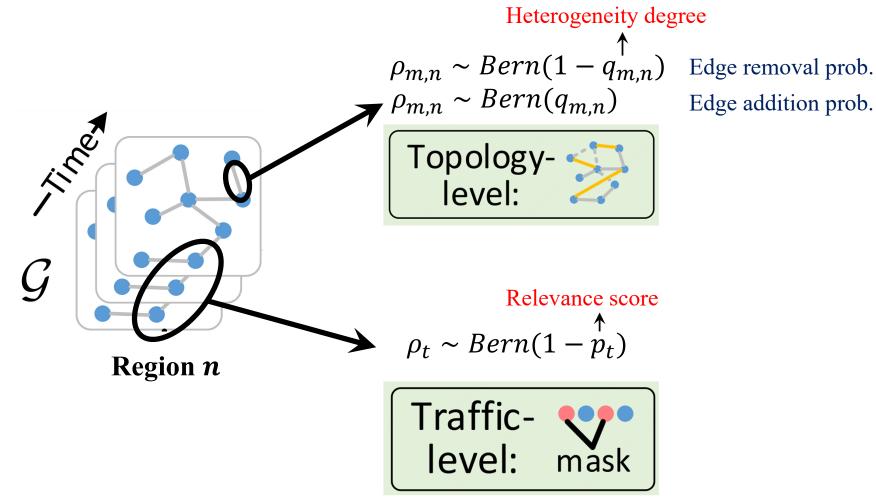


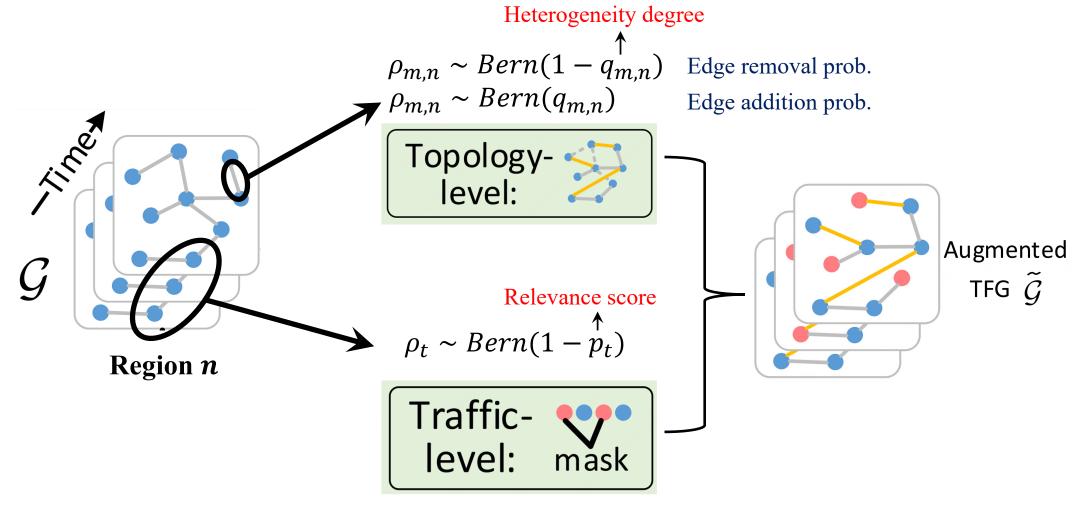




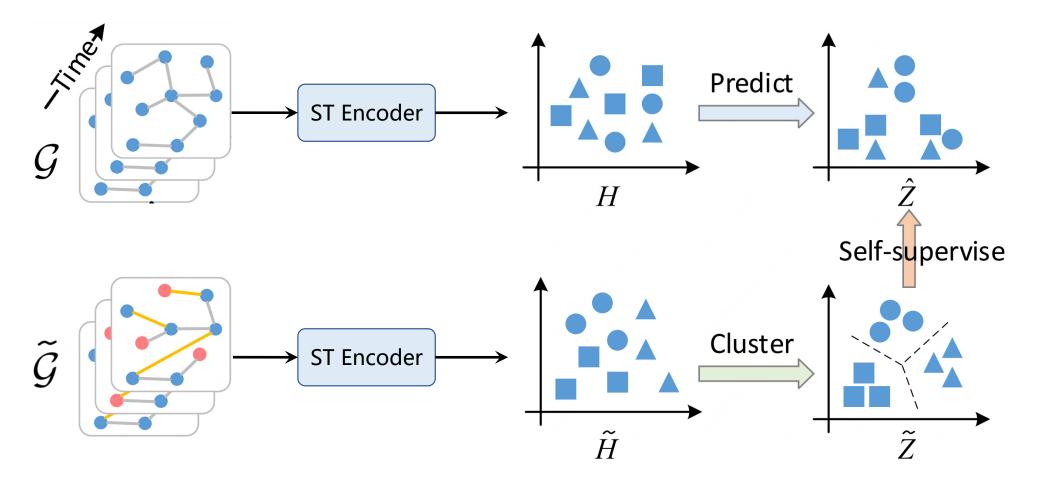




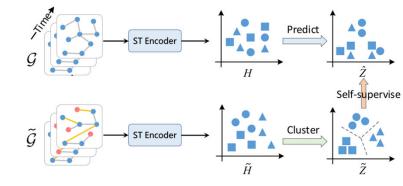




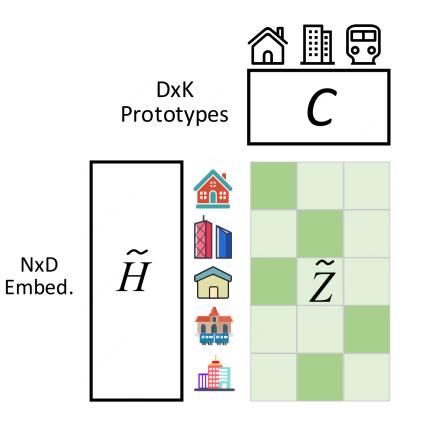
• Soft-clustering-based *predictive* SSL task

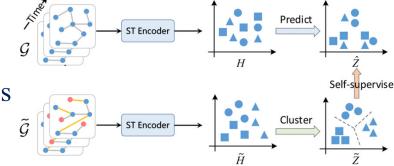


- Soft-clustering principal:
 - Generate *K* cluster embeddings (learnable)

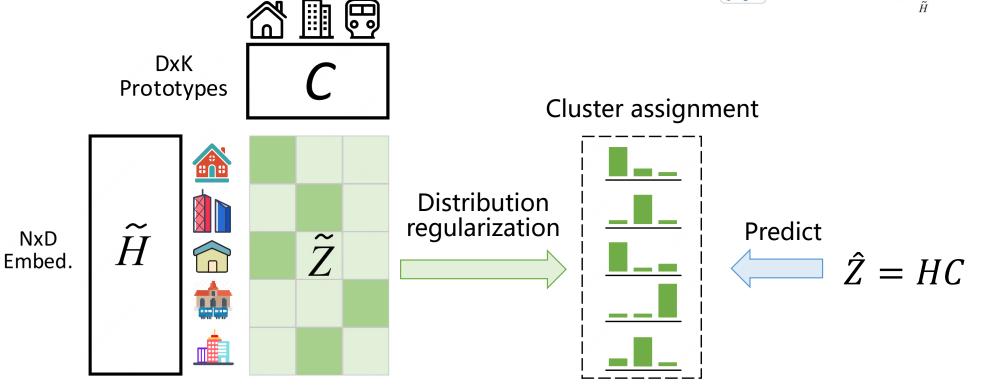


- Soft-clustering principal:
 - Generate *K* cluster embeddings (learnable)
 - Make cluster assignments using region embeddings

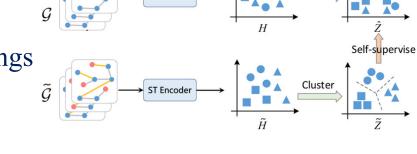




- Soft-clustering principal:
 - Generate *K* cluster embeddings (learnable)
 - Make cluster assignments using region embeddings
 - Predict cluster assignment score of each region



Predict



ST Encoder

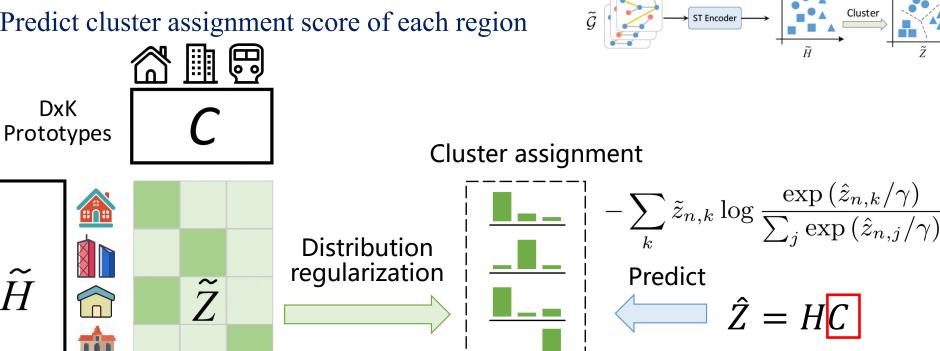
• Soft-clustering principal:

Ш

NxD

Embed.

- Generate *K* cluster embeddings (learnable)
- Make cluster assignments using region embeddings
- Predict cluster assignment score of each region



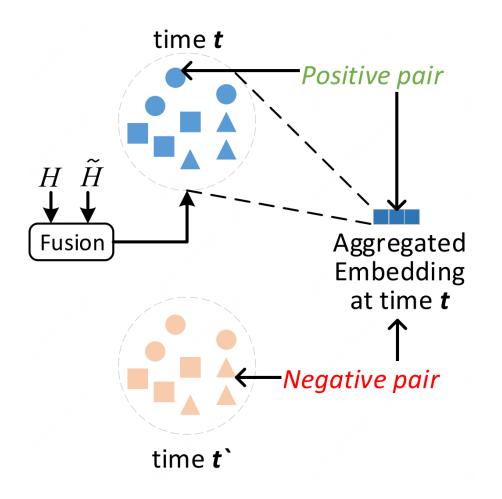
Self-supervise

Predict

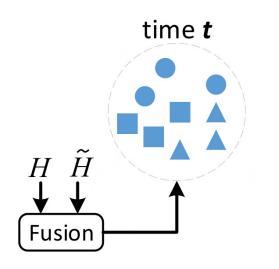
Learnable

ST Encoder

• Time-aware *contrastive* SSL task

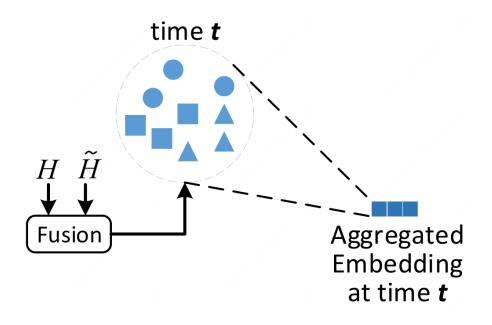


• Time-aware *contrastive* SSL task



Fusion: $\boldsymbol{v}_{t,n} = \boldsymbol{w_1} \odot \boldsymbol{h}_{t,n} + \boldsymbol{w_2} \odot \tilde{\boldsymbol{h}}_{t,n}$

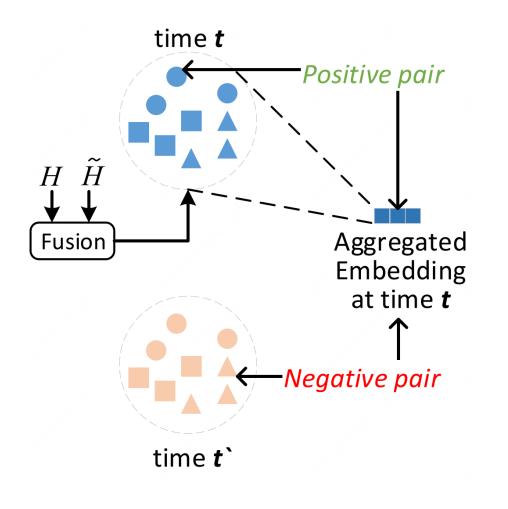
• Time-aware *contrastive* SSL task



Fusion:
$$oldsymbol{v}_{t,n} = oldsymbol{w_1} \odot oldsymbol{h}_{t,n} + oldsymbol{w_2} \odot \widetilde{oldsymbol{h}}_{t,n}$$

Aggregation:
$$\boldsymbol{s}_t = \sigma\left(\frac{1}{N}\sum_{n=1}^N \boldsymbol{v}_{t,n}\right)$$

• Time-aware *contrastive* SSL task



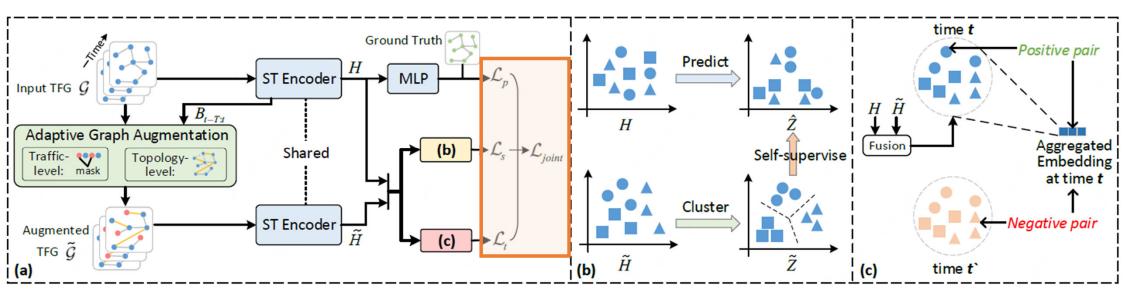
Fusion:
$$m{v}_{t,n} = m{w_1} \odot m{h}_{t,n} + m{w_2} \odot \widetilde{m{h}}_{t,n}$$

Aggregation:
$$\boldsymbol{s}_t = \sigma\left(\frac{1}{N}\sum_{n=1}^N \boldsymbol{v}_{t,n}\right)$$

Contrastive loss: $\mathcal{L}_{t} = -\left(\sum_{n=1}^{N} \log g\left(\boldsymbol{v}_{t,n}, \boldsymbol{s}_{t}\right) + \sum_{n=1}^{N} \log\left(1 - g\left(\boldsymbol{v}_{t',n}, \boldsymbol{s}_{t}\right)\right)\right)$ *Negative*

Model Training

Spatio-Temporal Self-Supervised Learning (ST-SSL) for robust traffic prediction



- Loss of traffic prediction branch: \mathcal{L}_p
- Loss of spatial heterogeneity modeling branch: \mathcal{L}_s
- Loss of temporal heterogeneity modeling branch: \mathcal{L}_t
- L_{joint}

• Datasets

• Four public datasets[1, 2] belonging to two types of real-world traffic mode

Data type	Bike	rental	Taxi GPS		
Dataset	NYCBike1	NYCBike2	NYCTaxi	BJTaxi	
Time interval	1 hour	30 min	30 min	30 min	
# regions	16×8	10×20	10×20	32×32	
# taxis/bikes	6.8k+	2.6m+	22m+	34k+	

[1] Deep spatio-temporal residual networks for citywide crowd flows prediction. AAAI'17.[2] Revisiting spatial-temporal similarity: A deep learning framework for traffic prediction. AAAI'19.

Experiments: Setup

• Baseline methods

- Time series prediction approaches
 - Autoregressive Integrated Moving Average Model (ARIMA)
 - Support Vector Regression (SVR)
- Spatio-temporal prediction methods
 - Spatio-Temporal Residual Networks (ST-ResNet) [Zhang, Zheng and Qi 2017]
 - Spatio-Temporal Graph Convolutional Network (STGCN) [Yu, Yin and Zhu 2018]
 - Graph Multi-Attention Network (GMAN) [Zheng et al. 2020]
- Spatial-temporal methods considering heterogeneity
 - Adaptive Graph Convolutional Recurrent Network (AGCRN) [Bai et al. 2020]
 - Spatial-Temporal Synchronous Graph Convolutional Networks (STSGCN) [Song et al. 2020]
 - Spatial-Temporal Fusion Graph Neural Networks (STFGNN) [Li and Zhu 2021]

Experiments: Overall results

Dataset	Metric	Туре	ARIMA	SVR	ST-ResNet	STGCN	GMAN	AGCRN	STSGCN	STFGNN	ST-SSL
NYCBike1 -	MAE	In Out	10.66 11.33	7.27 7.98	5.53±0.06 5.74±0.07	5.33±0.02 5.59±0.03	6.77±3.42 7.17±3.61	5.17±0.03 5.47±0.03	5.81±0.04 6.10±0.04	6.53±0.10 6.79±0.08	4.94±0.02 5.26±0.02
	MAPE	In Out	33.05 35.03	25.39 27.42	25.46±0.20 26.36±0.50	26.92±0.08 27.69±0.14	31.72±12.29 34.74±17.04	25.59±0.22 26.63±0.30	26.51±0.32 27.56±0.39	32.14±0.23 32.88±0.19	23.69±0.11 24.60±0.27
NYCBike2	MAE	In Out	8.91 8.70	12.82 11.48	5.63±0.14 5.26±0.08	5.21±0.02 4.92±0.02	5.24±0.13 4.97±0.14	5.18±0.03 4.79±0.04	5.25±0.03 4.94±0.05	5.80±0.10 5.51±0.11	5.04±0.03 4.71±0.02
	MAPE	In Out	28.86 28.22	46.52 41.91	32.17±0.85 30.48±0.86	27.73±0.16 26.83±0.21	27.38±1.13 26.75±1.14	27.14±0.14 26.17±0.22	29.26±0.13 28.02±0.23	30.73±0.49 29.98±0.46	22.54±0.10 21.17±0.13
NYCTaxi	MAE	In Out	20.86 16.80	52.16 41.71	13.48±0.14 10.78±0.25	13.12±0.04 10.35±0.03	15.09±0.61 12.06±0.39	12.13±0.11 9.87±0.04	13.69±0.11 10.75±0.17	16.25±0.38 12.47±0.25	11.99±0.12
	MAPE	In Out	21.49 21.23	65.10 64.06	24.83±0.55 24.42±0.52	21.01±0.18 20.78±0.16	22.73±1.20 21.97±0.86	18.78±0.04 18.41±0.21	22.91±0.44 22.37±0.16	24.01±0.30 23.28±0.47	16.38±0.10 16.86±0.23
BJTaxi	MAE	In Out	21.48 21.60	52.77 52.74	12.12±0.11 12.16±0.12	12.34±0.09 12.41±0.08	13.13±0.43 13.20±0.43	12.30±0.06 12.38±0.06	12.72±0.03 12.79±0.03	13.83±0.04 13.89±0.04	11.31±0.03 11.40±0.02
	MAPE	In Out	23.12 20.67	65.51 65.51	15.50±0.26 15.57±0.26	16.66±0.21 16.76±0.22	18.67±0.99 18.84±1.04	15.61±0.15 15.75±0.15	17.22±0.17 17.35±0.17	19.29±0.07 19.41±0.07	15.03±0.13 15.19±0.15

Table 2: Model comparison on four datasets in terms of MAE and MAPE (%). In and Out represent the inflow and outflow.

Experiments: Overall results

Dataset	Metric	Type	ARIMA	SVR	ST-ResNet	STGCN	GMAN	AGCRN	STSGCN	STFGNN	ST-SSL
	MAE	In	10.66	7.27	5.53±0.06	5.33±0.02	6.77±3.42	5.17±0.03	5.81±0.04	6.53±0.10	4.94±0.02
NYCBike1		Out	11.33	7.98	5.74±0.07	5.59 ± 0.03	7.17±3.61	5.47 ± 0.03	6.10 ± 0.04	6.79±0.08	5.26±0.02
ITT CDIRCI	MAPE	In	33.05	25.39	25.46 ± 0.20	26.92 ± 0.08	31.72±12.29	25.59±0.22	26.51±0.32	32.14 ± 0.23	23.69±0.11
	MALE	Out	35.03	27.42	26.36±0.50	27.69±0.14	34.74±17.04	26.63±0.30	27.56±0.39	32.88±0.19	24.60±0.27
MAE		In	8.91	12.82	5.63±0.14	5.21±0.02	5.24±0.13	5.18±0.03	5.25±0.03	5.80±0.10	5.04±0.03
NYCBike2	MAL	Out	8.70	11.48	5.26±0.08	4.92 ± 0.02	4.97 ± 0.14	4.79±0.04	4.94 ± 0.05	5.51 ± 0.11	4.71±0.02
NTCDIKC2	MAPE	In	28.86	46.52	32.17±0.85	27.73±0.16	27.38±1.13	27.14±0.14	29.26±0.13	30.73±0.49	22.54±0.1
		Out	28.22	41.91	30.48±0.86	26.83±0.21	26.75±1.14	26.17±0.22	28.02±0.23	29.98±0.46	21.17±0.1
0	MAE	In	20.86	52.16	13.48±0.14	13.12±0.04	15.09±0.61	12.13±0.11	13.69±0.11	16.25±0.38	11.99±0.1
NYCTaxi	WIAL	Out	16.80	41.71	10.78±0.25	10.35 ± 0.03	12.06±0.39	9.87±0.04	10.75 ± 0.17	12.47±0.25	9.78±0.09
NICIAXI	MAPE	In	21.49	65.10	24.83±0.55	21.01±0.18	22.73±1.20	18.78±0.04	22.91±0.44	24.01±0.30	16.38±0.1
	MAPE	Out	21.23	64.06	24.42±0.52	20.78±0.16	21.97±0.86	18.41±0.21	22.37±0.16	23.28±0.47	16.86±0.2
BJTaxi	MAE	In	21.48	52.77	12.12±0.11	12.34±0.09	13.13±0.43	12.30±0.06	12.72±0.03	13.83±0.04	11.31±0.0
		Out	21.60	52.74	12.16±0.12	12.41 ± 0.08	13.20±0.43	12.38±0.06	12.79 ± 0.03	13.89 ± 0.04	11.40±0.0
	MADE	In	23.12	65.51	15.50±0.26	16.66±0.21	18.67±0.99	15.61±0.15	17.22±0.17	19.29±0.07	15.03±0.1
	MAPE	Out	20.67	65.51	15.57±0.26	16.76±0.22	18.84±1.04	15.75±0.15	17.35 ± 0.17	19.41±0.07	15.19±0.1

Table 2: Model comparison on four datasets in terms of MAE and MAPE (%). In and Out represent the inflow and outflow.

• ST methods outperform time series approaches: necessity to capture spatial dependencies

Experiments: Overall results

Dataset	Metric	Туре	ARIMA	SVR	ST-ResNet	STGCN	GMAN	AGCRN	STSGCN	STFGNN	ST-SSL
NYCBike1	MAE	In	10.66	7.27	5.53±0.06	5.33±0.02	6.77±3.42	5.17±0.03	5.81±0.04	6.53±0.10	4.94±0.02
		Out	11.33	7.98	5.74±0.07	5.59 ± 0.03	7.17±3.61	5.47 ± 0.03	6.10±0.04	6.79±0.08	5.26±0.02
NT CDIKCI	MAPE	In	33.05	25.39	25.46 ± 0.20	26.92 ± 0.08	31.72±12.29	25.59±0.22	26.51±0.32	32.14±0.23	23.69±0.11
		Out	35.03	27.42	26.36±0.50	27.69±0.14	34.74±17.04	26.63±0.30	27.56±0.39	32.88±0.19	24.60±0.27
	MAE	In	8.91	12.82	5.63±0.14	5.21±0.02	5.24±0.13	5.18±0.03	5.25±0.03	5.80±0.10	5.04±0.03
NYCBike2	WIAL	Out	8.70	11.48	5.26±0.08	4.92 ± 0.02	4.97±0.14	4.79±0.04	4.94±0.05	5.51±0.11	4.71±0.02
NTCDIRC2	MAPE	In	28.86	46.52	32.17±0.85	27.73±0.16	27.38±1.13	27.14±0.14	29.26±0.13	30.73±0.49	22.54±0.10
		Out	28.22	41.91	30.48±0.86	26.83±0.21	26.75±1.14	26.17±0.22	28.02±0.23	29.98±0.46	21.17±0.13
0	MAE	In	20.86	52.16	13.48±0.14	13.12±0.04	15.09±0.61	12.13±0.11	13.69±0.11	16.25±0.38	11.99±0.12
NYCTaxi	WIAL	Out	16.80	41.71	10.78 ± 0.25	10.35 ± 0.03	12.06 ± 0.39	9.87±0.04	10.75 ± 0.17	12.47±0.25	9.78±0.09
ППСТал	MAPE	In	21.49	65.10	24.83±0.55	21.01±0.18	22.73±1.20	18.78 ± 0.04	22.91±0.44	24.01±0.30	16.38±0.10
		Out	21.23	64.06	24.42±0.52	20.78±0.16	21.97±0.86	18.41±0.21	22.37±0.16	23.28±0.47	16.86±0.23
BJTaxi	MAE	In	21.48	52.77	12.12±0.11	12.34±0.09	13.13±0.43	12.30±0.06	12.72±0.03	13.83±0.04	11.31±0.03
	WIAL	Out	21.60	52.74	12.16±0.12	12.41 ± 0.08	13.20 ± 0.43	12.38±0.06	12.79±0.03	13.89±0.04	11.40±0.02
DJ IAN	MADE	In	23.12	65.51	15.50±0.26	16.66±0.21	18.67±0.99	15.61±0.15	17.22±0.17	19.29±0.07	15.03±0.13
	MAPE	Out	20.67	65.51	15.57±0.26	16.76±0.22	18.84±1.04	15.75±0.15	17.35±0.17	19.41±0.07	15.19±0.15

Table 2: Model comparison on four datasets in terms of MAE and MAPE (%). In and Out represent the inflow and outflow.

- ST methods outperform time series approaches: necessity to capture spatial dependencies
- Methods considering heterogeneity perform better: rationality of learning spatial and temporal heterogeneity

Experiments: Overall results

Dataset	Metric	Туре	ARIMA	SVR	ST-ResNet	STGCN	GMAN	AGCRN	STSGCN	STFGNN	ST-SSL
NYCBike1	MAE	In	10.66	7.27	5.53±0.06	5.33±0.02	6.77±3.42	5.17±0.03	5.81±0.04	6.53±0.10	4.94±0.02
		Out	11.33	7.98	5.74±0.07	5.59 ± 0.03	7.17±3.61	5.47 ± 0.03	6.10±0.04	6.79±0.08	5.26±0.02
ITTEDIKET	MAPE	In	33.05	25.39	25.46 ± 0.20	26.92 ± 0.08	31.72±12.29	25.59 ± 0.22	26.51±0.32	32.14±0.23	23.69 ± 0.11
		Out	35.03	27.42	26.36±0.50	27.69±0.14	34.74±17.04	26.63±0.30	27.56±0.39	32.88±0.19	24.60±0.27
	MAE	In	8.91	12.82	5.63±0.14	5.21±0.02	5.24±0.13	5.18±0.03	5.25±0.03	5.80±0.10	5.04±0.03
NYCBike2	WIAL	Out	8.70	11.48	5.26±0.08	4.92 ± 0.02	4.97±0.14	4.79±0.04	4.94±0.05	5.51±0.11	4.71±0.02
NTCDIKC2	MAPE	In	28.86	46.52	32.17±0.85	27.73±0.16	27.38±1.13	27.14±0.14	29.26±0.13	30.73±0.49	22.54±0.10
		Out	28.22	41.91	30.48±0.86	26.83±0.21	26.75±1.14	26.17±0.22	28.02±0.23	29.98±0.46	21.17±0.13
0	MAE	In	20.86	52.16	13.48±0.14	13.12±0.04	15.09±0.61	12.13±0.11	13.69±0.11	16.25±0.38	11.99±0.12
NYCTaxi		Out	16.80	41.71	10.78 ± 0.25	10.35 ± 0.03	12.06±0.39	9.87±0.04	10.75 ± 0.17	12.47±0.25	9.78±0.09
ПТСТал	MAPE	In	21.49	65.10	24.83±0.55	21.01±0.18	22.73±1.20	18.78 ± 0.04	22.91±0.44	24.01±0.30	16.38±0.10
		Out	21.23	64.06	24.42±0.52	20.78±0.16	21.97±0.86	18.41±0.21	22.37±0.16	23.28±0.47	16.86±0.23
BJTaxi	MAE	In	21.48	52.77	12.12±0.11	12.34±0.09	13.13±0.43	12.30±0.06	12.72±0.03	13.83±0.04	11.31±0.03
		Out	21.60	52.74	12.16±0.12	12.41 ± 0.08	13.20±0.43	12.38±0.06	12.79±0.03	13.89±0.04	11.40±0.02
DJ TAXI	MADE	In	23.12	65.51	15.50±0.26	16.66±0.21	18.67±0.99	15.61±0.15	17.22±0.17	19.29±0.07	15.03±0.13
	MAPE	Out	20.67	65.51	15.57±0.26	16.76±0.22	18.84±1.04	15.75±0.15	17.35±0.17	19.41±0.07	15.19±0.15

Table 2: Model comparison on four datasets in terms of MAE and MAPE (%). In and Out represent the inflow and outflow.

- ST methods outperform time series approaches: necessity to capture spatial dependencies
- Methods considering heterogeneity perform better: rationality of learning spatial and temporal heterogeneity
- Our ST-SSL performs best over all datasets: effectiveness of *jointly* modeling the spatial and temporal heterogeneity in a *self-supervised* manner

Experiments: Ablation study

- Ablation study on sub-modules, including
 - Adaptive augmentation: graph topology-level and traffic-level
 - Spatial heterogeneity modeling and temporal heterogeneity modeling
- ST-SSL-sa: replaces heterogeneityguided structure augmentation on graph topology with random augmentations
- ST-SSL-ta: replaces heterogeneityguided traffic-level augmentation with random masking

Experiments: Ablation study

- Ablation study on sub-modules, including
 - Adaptive augmentation: graph topology-level and traffic-level
 - Spatial heterogeneity modeling and temporal heterogeneity modeling
- ST-SSL-sa: replaces heterogeneityguided structure augmentation on graph topology with random augmentations
- ST-SSL-ta: replaces heterogeneityguided traffic-level augmentation with random masking
- ST-SSL-sh: removes spatial heterogeneity modeling
- ST-SSL-th: removes temporal heterogeneity modeling

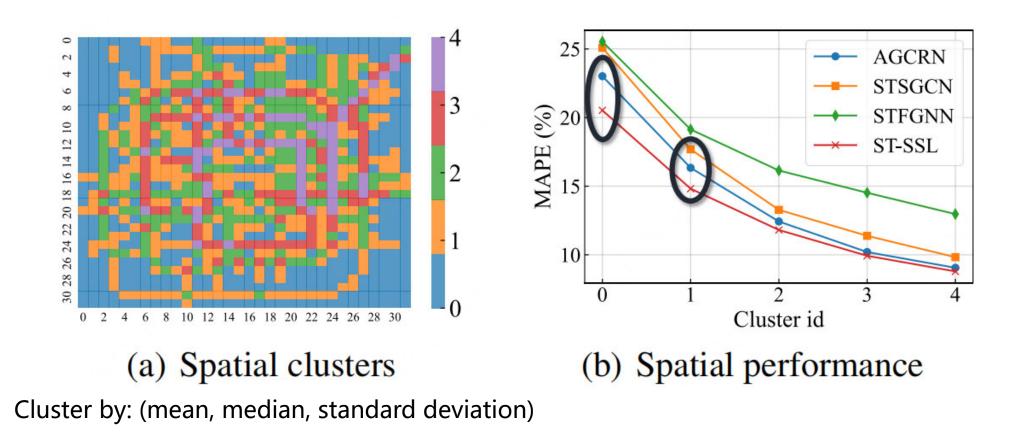
Experiments: Ablation study

- Ablation study on sub-modules, including
 - Adaptive augmentation: graph topology-level and traffic-level
 - Spatial heterogeneity modeling and temporal heterogeneity modeling
 - ST-SSL ST-SSL-sa ST-SSL-ta ST-SSL-sh ST-SSL-th 5.4 5.3 12.0 13 5.1 5.1 11.5 MAE 11 4.9 10 11.0 4.7 4 5 4.5 10 5 Out Out Out Out In In In In 19 26 24 16 MAPE (%) 25 18 23 15 22 14 23 21 16 22 20 Out In Out In Out In Out In NYCBike1 NYCBike2 NYCTaxi BJTaxi
- ST-SSL-sa: replaces heterogeneityguided structure augmentation on graph topology with random augmentations
- ST-SSL-ta: replaces heterogeneityguided traffic-level augmentation with random masking
- ST-SSL-sh: removes spatial heterogeneity modeling
- ST-SSL-th: removes temporal heterogeneity modeling

• Traffic prediction for *spatial* regions with heterogeneous data distributions

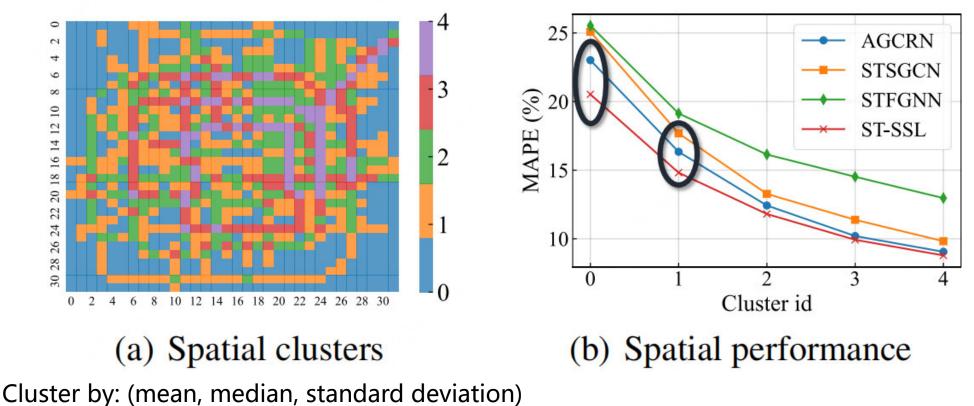
Experiments: Robustness Analysis (1/2)

• Traffic prediction for *spatial* regions with heterogeneous data distributions



Experiments: Robustness Analysis (1/2)

- Traffic prediction for *spatial* regions with heterogeneous data distributions
 - ST-SSL surpasses other baselines in different types of spatial regions
 - Particularly for less popular regions (with smaller cluster id)

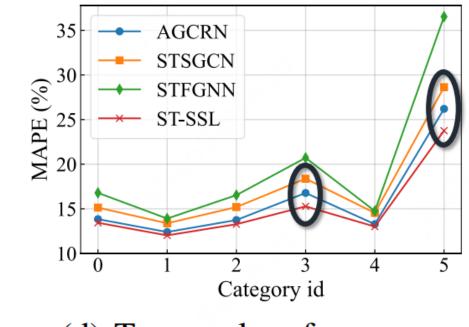


Experiments: Robustness Analysis (2/2)

• Traffic prediction for *time* periods with different traffic patterns

Day type	Time period	Category (id)			
	7:00-10:00	Morning (0)			
Workday	10:00-17:00	Regular (1)			
workday	17:00-20:00	Evening (2)			
	20:00-7:00	Night (3)			
Holiday	9:00-22:00	Day (4)			
попаау	22:00-9:00	Night (5)			

(c) Temporal categories



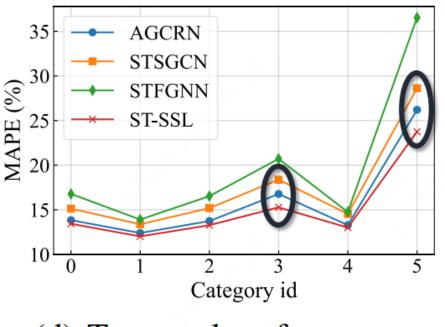
(d) Temporal performance

Experiments: Robustness Analysis (2/2)

- Traffic prediction for *time* periods with different traffic patterns
 - ST-SSL beats the baselines in terms of every temporal category, verifying its robustness
 - ST-SSL shows a significant improvement in categories 3 and 5, during which times traffic flow data are typically sparse

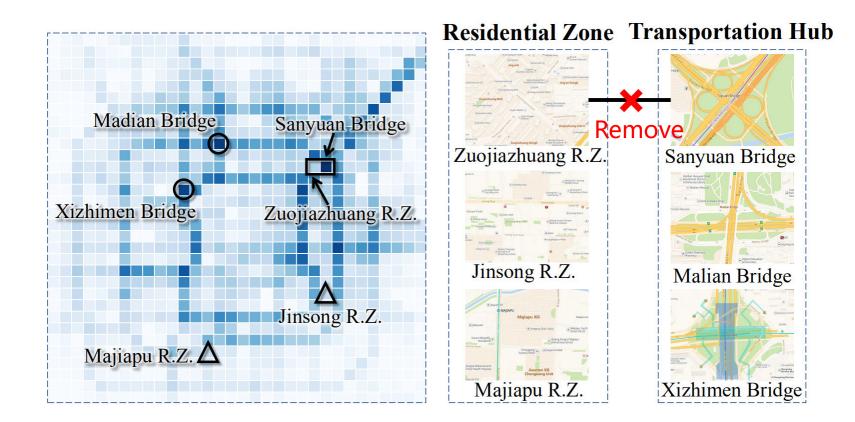
Day type	Time period	Category (id)			
	7:00-10:00	Morning (0)			
Workday	10:00-17:00	Regular (1)			
workday	17:00-20:00	Evening (2)			
	20:00-7:00	Night (3)			
Holiday	9:00-22:00	Day (4)			
попаау	22:00-9:00	Night (5)			

(c) Temporal categories

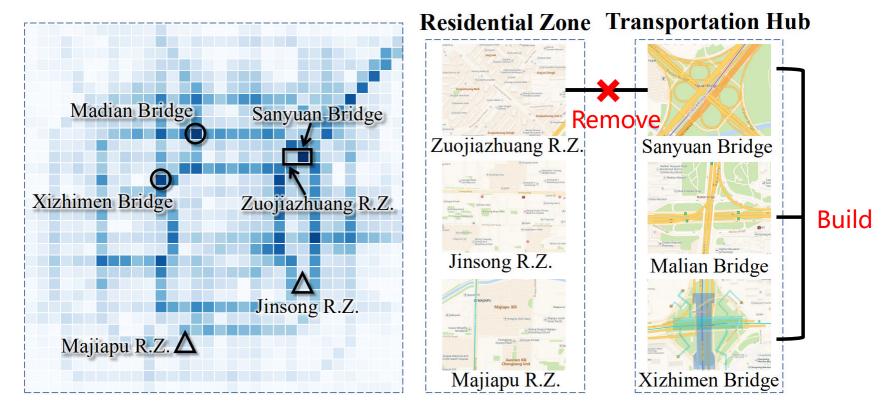


(d) Temporal performance

- Investigation on heterogeneity-guided graph topology-level augmentation
 - Remove connections between adjacent regions with heterogeneous traffic patterns

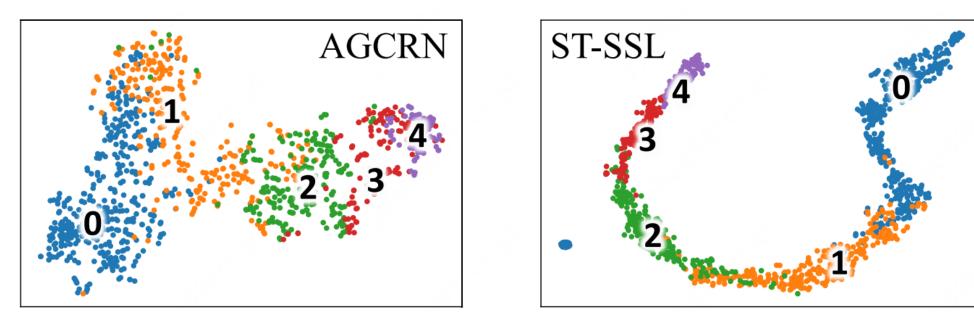


- Investigation on heterogeneity-guided graph topology-level augmentation
 - Remove connections between adjacent regions with heterogeneous traffic patterns
 - Build connections between distant regions with similar latent urban function



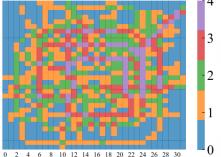
Experiments: Qualitative Study (2/2)

• How the learned embeddings benefit the model?



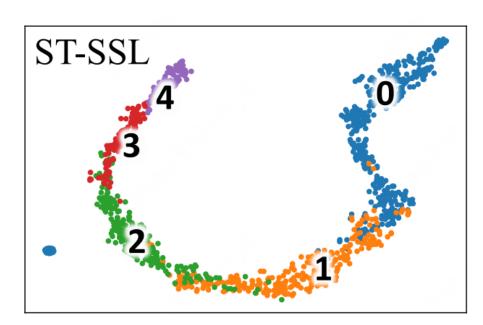
Embedding visualization using t-SNE

Cluster info.

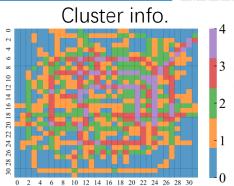


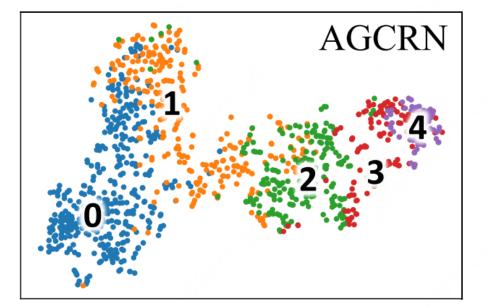
Experiments: Qualitative Study (2/2)

- How the learned embeddings benefit the model?
 - Samples are more compact and those of different classes are better separated for ST-SSL



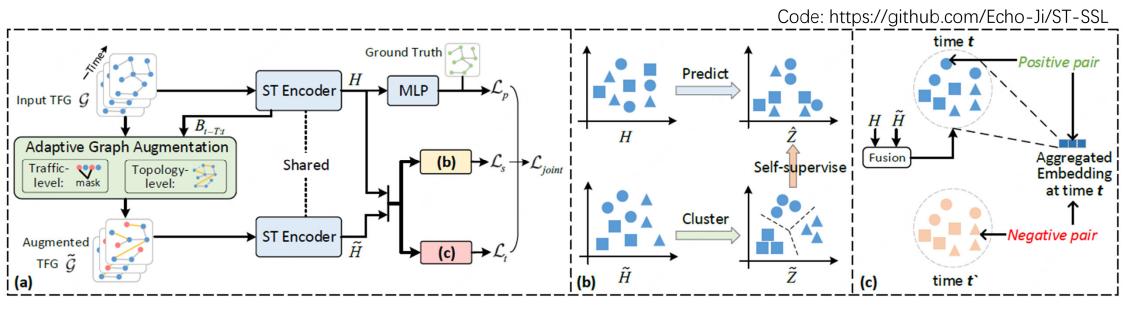
Embedding visualization using t-SNE





Broader Impact

Spatio-Temporal Self-Supervised Learning (ST-SSL) for robust traffic prediction



- Provide confidence for the marriage of SSL and ST prediction
- Cast light on other ST applications, such as air quality prediction
- Can be used as a **new paradigm** for ST prediction in **low-quality data** settings

Paper: <u>https://arxiv.org/abs/2212.04475</u> Code: <u>https://github.com/Echo-Ji/ST-SSL</u> Homepage: <u>https://echo-ji.github.io/academicpages/</u>

