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• Traffic flow prediction
• Forecasting the future traffic volume from past traffic observations

……

Past observations Target Citywide traffic volume 
at a given time

Example
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• Existing methods focus on modeling spatio-temporal (ST) correlations

• Two main limitations
Temporal heterogeneity

Using a shared parameter space for all time periodsIgnorance of spatial heterogeneity

Spatial heterogeneity
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Spatio-Temporal Self-Supervised Learning (ST-SSL) for robust traffic prediction

• ST Encoder:  encoding spatial-temporal traffic patterns into embeddings H
• SSL for Spatial heterogeneity modeling (b):

• Adaptive graph augmentation on traffic flow graph 
• Soft clustering-based predictive SSL task 

• SSL for Temporal heterogeneity modeling (c): time-aware contrastive SSL task 



Spatio-Temporal Encoder

• Goal: encoding spatial-temporal traffic patterns into the embedding H
• It can be any spatio-temporal prediction model
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Input
TFG HST Encoder：

• Goal: encoding spatial-temporal traffic patterns into the embedding H
• It can be any spatio-temporal prediction model

• We choose the effective STGCN-like structure as our ST encoder:
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Adaptive Graph Augmentation on TFG

• Region-wise Heterogeneity Measurement
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SSL for Spatial Heterogeneity Modeling

• Soft-clustering-based predictive SSL task

ST Encoder

ST Encoder
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SSL for Spatial Heterogeneity Modeling

• Soft-clustering principal:
• Generate K cluster embeddings (learnable)
• Make cluster assignments using region embeddings
• Predict cluster assignment score of each region

Distribution 
regularization

Cluster assignment

Predict

Learnable
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SSL for Temporal Heterogeneity Modeling

• Time-aware contrastive SSL task

Fusion:

Aggregation:

Contrastive loss:

Positive

Negative



Model Training

Spatio-Temporal Self-Supervised Learning (ST-SSL) for robust traffic prediction

• Loss of traffic prediction branch: ℒ

• Loss of spatial heterogeneity modeling branch: ℒ

• Loss of temporal heterogeneity modeling branch: ℒ

ℒ



• Datasets
• Four public datasets[1, 2] belonging to two types of  real-world traffic mode

Experiments: Setup

[1] Deep spatio-temporal residual networks for citywide crowd flows prediction. AAAI’17.
[2] Revisiting spatial-temporal similarity: A deep learning framework for traffic prediction. AAAI’19.



• Baseline methods
• Time series prediction approaches

• Autoregressive Integrated Moving Average Model (ARIMA)
• Support Vector Regression (SVR)

• Spatio-temporal  prediction methods
• Spatio-Temporal Residual Networks (ST-ResNet) [Zhang, Zheng and Qi 2017]
• Spatio-Temporal Graph Convolutional Network (STGCN) [Yu, Yin and Zhu 2018]
• Graph Multi-Attention Network (GMAN) [Zheng et al. 2020]

• Spatial-temporal methods considering heterogeneity
• Adaptive Graph Convolutional Recurrent Network (AGCRN) [Bai et al. 2020]
• Spatial-Temporal Synchronous Graph Convolutional Networks (STSGCN) [Song et al. 

2020]
• Spatial-Temporal Fusion Graph Neural Networks (STFGNN) [Li and Zhu 2021]

Experiments: Setup
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Experiments: Overall results

• ST methods outperform time series approaches: necessity to capture spatial dependencies
• Methods considering heterogeneity perform better: rationality of learning spatial and temporal heterogeneity
• Our ST-SSL performs best over all datasets: effectiveness of jointly modeling the spatial and temporal 

heterogeneity in a self-supervised manner



Experiments: Ablation study

• Ablation study on sub-modules, including
• Adaptive augmentation: graph topology-level and traffic-level
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guided structure augmentation on
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guided traffic-level augmentation
with random masking
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Experiments: Robustness Analysis (1/2)

• Traffic prediction for spatial regions with heterogeneous data distributions
• ST-SSL surpasses other baselines in different types of spatial regions
• Particularly for less popular regions (with smaller cluster id)

Cluster by: (mean, median, standard deviation)



Experiments: Robustness Analysis (2/2)

• Traffic prediction for time periods with different traffic patterns



Experiments: Robustness Analysis (2/2)

• Traffic prediction for time periods with different traffic patterns
• ST-SSL beats the baselines in terms of every temporal category, verifying its robustness
• ST-SSL shows a significant improvement in categories 3 and 5, during which times traffic

flow data are typically sparse
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Experiments: Qualitative Study (1/2)

• Investigation on heterogeneity-guided graph topology-level augmentation
• Remove connections between adjacent regions with heterogeneous traffic patterns
• Build connections between distant regions with similar latent urban function

Remove

Build
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Experiments: Qualitative Study (2/2)

• How the learned embeddings benefit the model?
• Samples are more compact and those of different classes 

are better separated for ST-SSL

Embedding visualization using t-SNE

Cluster info.



Broader Impact

Spatio-Temporal Self-Supervised Learning (ST-SSL) for robust traffic prediction

• Provide confidence for the marriage of SSL and ST prediction

• Cast light on other ST applications, such as air quality prediction

• Can be used as a new paradigm for ST prediction in low-quality data settings

Code: https://github.com/Echo-Ji/ST-SSL



Thank you!

Paper: https://arxiv.org/abs/2212.04475
Code: https://github.com/Echo-Ji/ST-SSL
Homepage: https://echo-ji.github.io/academicpages/


