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Big Data Technology in Infectious Diseases
Modeling, Simulation and Prediction After the

COVID-19 Outbreak: A Survey
HonghaoShi1, JingyuanWang1,∗, JiaweiCheng1,
XiaopengQi2, HanranJi2, ClaudioJ.Struchiner3,4,

DanielA.M.V illela5, EduardV.Karamov6,7, AliS.Turgiev6,7

Abstract—After the outbreak of COVID-19, the interaction of infectious disease systems and social systems has challenged traditional
infectious disease modeling methods. Starting from the research purpose and data, researchers improve the structure and data of the
compartment model or use agents and AI-based models to solve epidemiological problems. In terms of modeling methods, the
researchers use compartment subdivision, dynamic parameters, agent-based model methods, and AI-related methods. In terms of
factors studied, the researchers studied 6 categories: human mobility, NPIs, ages, medical resources, human response, and vaccine.
The researchers completed the study of factors through modeling methods, to quantitatively analyze the impact of social systems, and
put forward their suggestions for the future transmission status of infectious diseases and prevention and control strategies. This review
starts with a research structure of research purpose, factor, data, model, and conclusion. focusing on the post-COVID-19 infectious
disease prediction simulation research, summarizes various improvement methods, and analyzes matching improvements for various
specific research purposes.

Keywords—infectious disease model; data embedding; social system; dynamic; modeling the social systems; future preparedness
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1 INTRODUCTION

Researchers use infectious disease models to study how
infectious diseases spread, how fast they spread, and their
spatial-temporal characteristics. The most commonly used
infectious disease model is the population model repre-
sented by the compartment model, such as SIR

[1]
, SEIR

[2]
.

They divided the whole into several different groups ac-
cording to different states, such as susceptible, infected,
removed, etc., and used differential equations to define the
mechanism of individual flow between groups.

From 1927, SEIR and other compartment models have
been successfully applied to measles

[3]
, SARS

[4]
and in-

fluenza A (H1N1)
[5]

.
The three main elements of compartment models

are Compartments, Transmissions(between compartments),
and Parameters. After the outbreak of COVID-19, three
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elements of the compartment model faced limitations. These
limitations stem from a common cause: the influence of
social systems on infectious disease systems. Whether it’s
non-pharmacological interventions, vaccination strategies,
the intensity of population activity, or the age distribution
of those infected, these varied effects can each be attributed
to a single factor in the social system. Researchers first
determine the factor to be studied, then look for data that
can characterize this factor, use modeling methods, and
finally complete the research purpose through experiments.

In this review, Chapter 2 will introduce the basic con-
cepts, application status, and limitations of infectious dis-
ease models. Chapter 3 categorizes the new modeling meth-
ods, and chapter4 categorizes the research factors, their cor-
responding data, and modeling methods. Chapter 5 would
introduce the preparedness for future outbreaks.

2 TRADITIONAL COMPARTMENT MODEL

2.1 What is Compartment Model
A compartment model is a mathematical model that utilizes
a set of compartments, parameters, and transformations
to model the development of an infectious disease. The
mathematical representation and practical significance of
these three elements are shown in table 1:

Considering that all the compartments and parameters
appear in the transformations in the form of a variable, a
compartment model can be represented by a differential
equation system.

Take the simplest SI model
[6]

as an example: SI contains
two compartments: S(susceptible) and I(infectious), one pa-
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TABLE 1
The mathematical representation and practical significance of

compartments, parameters, and transformations

mathematical repre-
sentation

practical significance

Compartment a state such as a sus-
ceptibility, infectious,
or death

a function F (t)
relative to time,
where t represents
time, F (t) represents
the compartment’s
value at the
corresponding time,
the compartment’s
value represents
the number of
individuals in a
corresponding state

Parameters a numerical feature,
such as infection
rate, mortality rate,
or time to onset

a figure

Transformation the process of devel-
oping an epidemic,
such as being in-
fected and cured

a differential equa-
tion, where the left
side is the differential
of a certain compart-
ment with respect to
time t, and the right
side is an expression
consisting of com-
partment values, pa-
rameters, and con-
stants

rameter: β for transmission rate, and two transformations.
The differential equations of the SI model are:

dS

dt
= −β · S · I

N
(2.1.1)

dI

dt
=

β · S · I
N

(2.1.2)

S + I ≡ N (2.1.3)

2.2 SEIR Compartment Model

Before the outbreak of COVID-19
[2]

, the most widely used
epidemic model was the SEIR compartment model. The
differential equations of the SEIR model are:

dS

dt
= −β · S · I

N
(2.2.1)

dE

dt
=

β · S · I
N

− α · E (2.2.2)

dI

dt
= α · E − γ · I (2.2.3)

dR

dt
= γ · I (2.2.4)

S + E + I +R ≡ N (2.2.5)

In this system of equations, the meaning of each com-
partment, parameter, transformation, and constant N is
shown in table 2 The SEIR model defines four states of
the epidemic transmission process and the transformations
between them. If it is possible to determine a set of initial
compartments’ values and parameters’ values so that the
compartments’ values simulated by the model are consistent

TABLE 2
The meaning of SEIR compartment model

Type mathematical
representa-
tion

practical significance

Compartment

S susceptible
E exposed
I infectious
R removed(death + recovered)

Parameter
β transmission rate
α the reciprocal of latency
γ removal rate

Constant N population

with the real value time series, for example I(t) is consistent
with the real number of existing patients, it means that
the development process of the current infectious disease
is consistent with the model. As a result, the model can be
used for epidemic prediction.

2.3 How to use SEIR model to Predict Epidemic

2.3.1 The definition of Epidemic Prediction task

First, a definition should be made for the epidemic predic-
tion task using the SEIR model:

• Through method f , Parameters are extracted from
Origin Data.

• Through method h, Initial Value of compartments(as
well as N) are determined from Origin Data.

• Parameters and Initial Value constitute SEIR Input.
• Through the principals of SEIR model, SEIR Input is

calculated as SEIR Output.
• Through method g, SEIR Output forms the results

of the task.

When researchers use the SEIR model for epidemic
prediction, they first start from the original data, use the
method f to extract the parameters, and use the method
h to obtain the initial compartments’ values and constant
values. The initial compartments’ values and constant val-
ues determine and only determine the input of the SEIR
model. After the calculation of SEIR’s differential equations,
the researchers obtain the model output such as the time
series of the number of infectious individuals and finally
used another method g to extract the final result of the
epidemic prediction task.

In practice, the original data should at least contain a
time series of the number of infected and cured people and
the population. In such a case, h and g are relatively simple:

• Method h: Taking the initial value of the number
of infected people as the initial value of the I com-
partment, the sum of the initial value of cured and
dead people as the initial value of the R compart-
ment, and the population as N. Then estimating E
compartment’s initial value as coeEI times the initial
value of I compartment

[7]
or the accumulated value

of infected people in the next few days
[8]

. Finally,
using S + E + I + R ≡ N to calculate the initial
value of the S compartment;
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• Method g: Taking I compartment as the number of
existing patients, and the sum of I and R compart-
ment as the cumulative number of patients.

In fact, h and g vary substantially as researchers use exter-
nal data to study new scenarios such as country-specific,
population mobility, etc.

[9], [10]
. Therefore, the method f for

extracting parameters would be introduced first.

2.3.2 How to extract Parameters

In different studies, the parameter extracting method f can
be generally divided into three categories: apriori, operator
calculation, and fitting. It is worth noting that different
parameters in the same study may also be extracted in
different ways. For example a study may use the apriori
method to extract α, and the fitting method to extract β.

Apriori is to use information, facts, or data outside the
extracting process of parameters, and directly extracting the
value of the parameters. For example several studies use the
reciprocal of the time of latency as the value of α

[11], [12]
. This

time is derived from clinical data and has nothing to do with
the SEIR model.

Operator calculation is to use of external data to cal-
culate the value of parameters through several formulas
or a simple mathematical model. For example, Kissler and
Christine

[13]
used the strain-level incidence proxies and the

generation interval distributions to estimate the daily effec-
tive reproduction number(Ru), then used Ru to determine
parameters in SEIR model:

Ru =

u+imax∑

t=u

b(t)g(t− u)
∑imax

a=0 b(t− a)g(a)
(2.3.1)

where b(t) is the strain-level incidence proxy on day
t, g(a) is the value of the generation interval distribution
at time a, and imax is the maximum generation interval,
set as the first day at which over 99of generation interval
distribution had been captured

[13]
.

Operator calculation is suitable for dealing with external
factors that have little to do with the development scale and
stage of infectious diseases, such as temperature, humidity,
ultraviolet rays, and other climatic factors. Some studies
from top journals have introduced the ERA5 dataset by
invariably, and used the formula βt = exp{a·dt+log(dmax−
dmin)} + dmin to calculate β under the scenario of taking
into account climate factors

[14], [15], [16]
, where {dt} refers to

temperature or UV rays from ERA5 dataset.
Fitting refers to calculating a set of optimal or relatively

optimal parameters through an optimization method so that
the simulated compartment values of this set of parameters
are as close as possible to the real situation. The fitting
method is the major method for extracting parameters,
and it is also the only method whose results are strongly
correlated with the actual development of the epidemic. For
example, L Xue and others

[17]
used the MCMC method to

extract the parameters in epidemic models, which modeled
COVID-19 in Wuhan, Toronto, and Italy. Because the fitting
method is based on real data, it is also called a data-driven
method.

2.3.3 The weakness of Traditional Compartment Model
After the outbreak of COVID-19, the SEIR model has shown
two limitations as an infectious disease model: it cannot
modeling the real social systems and dynamics.

Although the SEIR model models the whole process
of contact-exposure-onset-removal of the development of
infectious diseases, it is too ideal for the assumptions of
compartments and individuals. This is reflected in:

• Individuals in the same compartment are identical.
For example, infected individuals transmit the dis-
ease to susceptible individuals at an average rate,
and each individual has the same importance in the
transmission chain.

• Each individual is indifferent without subjective
initiative. Individuals will not change their action
strategies or formulate non-pharmacological inter-
ventions(NPIs, similarly hereinafter) according to the
development of the epidemic.

• The compartment is set according to the principle
of the epidemic, not the actual observation data.
For example, the infected person’s compartment is
set, but only the confirmed data can be obtained in
reality, and the error of approximate substitution is
unignorable.

With increased human mobility and the introduction of
NPIs, the complex, dynamic spread of COVID-19 has di-
verged significantly from SEIR’s single, static assumption.
At the same time, the ability to obtain front-line data also
limits the modeling capabilities of SEIR: Henrik Salje and
others

[18]
modeled the different ages of individuals in the

compartment and took into account the special propagation
patterns of this scene in France, Vadim A. Karatayeva and
others

[19]
modeled the dynamics of the transmission rate

caused by dynamics in population mobility, and conducted
a simulation experiment on the effect of NPIs based on this
model.

3 METHODS TO IMPROVE TRADITIONAL COM-
PARTMENT MODEL IN COVID-19 ERA

The improvement about ”Modeling the Dynamics” were
well-known before COVID-19 outbreak, but using these
improvement with big data to solve infectious disease
modeling problem proliferate after COVID-19 outbreak. We
review these methods here, and review specific research
purpose with specific data in chapter 4.

3.1 Modeling the Dynamics
Dynamics means that the epidemic model varies with ex-
ternal factors such as spatial factors, temporal factors, and
characteristics. According to the scale of variation, the meth-
ods of modeling dynamics can be divided into two cate-
gories: multi-stage models and parameter dynamics. Multi-
stage models vary more but require more complete data
and logic to support. Dynamic parameters only change the
parameters of the model, which is more feasible under the
premise of reasonable model design. In practical research,
multi-stage models are often used to review specific epi-
demics, while parameter dynamics are suitable for extensive

                  



4

research such as data analysis, simulation, prediction, and
regression. The difference between the multi-stage model
and dynamic parameters could be seen in table 3.

TABLE 3
The difference between multi-stage model and dynamic parameters

Aspect multi-stage model dynamic parameters

scale of varia-
tion

whole model only parameters

required data lots and complex simple arrays
usually, sometimes
geospatial or graph
data

research focus when to divide stage,
how to model each
stage

how to use array
data to make param-
eters dynamic

research inter-
est

review specific epi-
demics

scientific purpose

popularity low, only a bit high, most of the re-
search about model-
ing dynamics

3.1.1 Multi-stage Models

The multi-stage model refers to the use of different models
to model the epidemic according to certain rules. The dy-
namic nature of the multi-stage model is usually reflected
in the time dimension, which is derived from the NPIs, an
external factor with great influence.

Xingjie Hao and Chaolong Wang
[20]

published their aca-
demic research on the review of COVID-19 in Wuhan in
Nature. Using the SAPHIRE framework, they differentiated
between symptomatic and asymptomatic infections and
added presymptomatic compartments between exposed
and infected compartments. Using this framework, they
introduced the release timing of NPIs such as Wuhan’s city
closure and established a five-stage SEPIR-class epidemic
model. The transformations of the model for each stage are
the same, but the compartments’ values are reset according
to the end of the previous stage and the real data. The pa-
rameters are also completely re-fitted by the Markov chain
Monte Carlo method. The cut-off points of the five stages are
determined a priori by NPIs, such as 2020.1.22 (Wuhan’s city
closure) or 2022.2.2 (with the addition of clinical diagnosis
criteria), and have nothing to do with confirmed case data
or the SEPIR model itself.

A study published in PNAS by Daniel Duque and
others

[21]
on social distancing and COVID-19 hospital surges

also used a multi-stage model. Unlike Chaolong Wang, they
presented a strategy for triggering short-term shelter-in-
place orders when hospital admissions surpass a threshold.
In other words, they use a certain data indicator to automat-
ically obtain cut-off points, rather than manually specifying
them based on external factors.

In the study of modeling dynamics using multi-stage
models, manual formulation and automatic acquisition ac-
cording to a certain index are two types of methods to obtain
cut-off points. The former, such as the review of an epidemic
in Wuhan by Wang

[20]
and the research on how Chinese

NPIs control COVID-19 by maier
[22]

, deal with irregular,
sudden external influences like NPIs. The latter, such as the

research on hospital surges by Duque
[21]

, deal with exter-
nal factors with certain regularity. It’s usually a threshold
like the hospital admissions threshold or the government
response index threshold

[23]
. The difference between them is

summarized in table 4

TABLE 4
The summary of multi-stage model

Aspect Manuel Automatic

basis external human in-
tervention

external indicator
with a certain
threshold

scenarios NPIs extensive external
factors

At last, models in different stages are re-fitted as least,
which is a variation on a larger scale compared to dynamic
parameters.

3.1.2 Dynamic Parameters

Dynamic Parameters refer to the use of external data to
change the parameters of the infectious disease model from
a figure to an array or even a matrix by means of apriori,
operators, or complex sub-models. Dynamic parameters are
more of a modeling basis than an improvement. Dynamic
parameters are to the COVID-19 model what the E com-
partment is to the SEIR model, a common feature of models.
The ultimate purpose of dynamic parameters is very broad,
but the direct reason is that the parameters of the model are
affected by external factors, so as to study the relationship
between those external factors and the epidemic. Compared
with multi-stage models, research with dynamic parameters
as the main method not only focuses on the review and
analysis of past epidemics, but also on simulation exper-
iments using models, and scientific conclusions are drawn
from them. For example, Serina Chang and others

[24]
divided

the places where people contact each other and cause in-
fection into CBG (census block group) and POI (points of
interest), where CBG is a geographic unit with a population
of 600-3000, and POIs are frequented by people Places such
as restaurants, grocery stores, and places of worship. The
transmission rate βbase of all CBG home infections is the
same value, while those of POIs are:

β(t)
pj

= φd2pj

V
(t)
pj

apj

(3.1.1)

where φis a same propagation constant for all POIs, apj

is the actual area of pj , V (t)
pj is the volume of visitors at time

t and dpj
is the average hourly percentage of visitors visiting

this POIs at any time. In this case, the transmission rate β is
dynamic in the spatial dimension.

As defined in the extraction parameter section, re-
searchers can also obtain dynamic parameters through
apriori and operator calculation methods. In Chang’s
research

[24]
, they use multiplication and division operators

to introduce the relevant data of visitors to complete the
parameter dynamic process. In addition, researchers will
also use models in the fields of mathematics and com-
puter science, such as Bayesian regression models, RNN-
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class models, and GNN-class models, to extract dynamic
parameters, that is, complex sub-model methods.

Compared with original infectious disease modeling,
researchers introducing complex sub-models are more in-
clined to explore how to design sub-models to allow SEIR-
like epidemic models, or more broadly, dynamic mod-
els(refers to models who model a dynamic system like an
epidemic, ”dynamic” here has a different meaning with
those in ”dynamic parameters”), to model the link between
social systems and infectious disease systems. For exam-
ple, Chang and others

[25]
discussed in detail the impact of

NI(no interventions), CI(case isolation), HQ(home quaran-
tine), SC(school closures) policies and their combinations
on SD(social distance), and the spread of the epidemic.
Among them, the results of SD are used to extract dynamic
parameters in the SEIR model.

In the field of computer science, machine learning mod-
els are particularly suitable for the task of processing given
data and discovering valuable information or conclusions.
In research using complex sub-models to obtain dynamic
parameters, most researchers use machine learning models
instead of complex but traditional mathematical models. In
fact, with the introduction of machine learning methods, the
original SEIR’s compartment settings and transformations
have also undergone different changes.

For instance, Amray Schwabe and others
[26]

presented
a paper at the KDD conference, using machine learning
models to process massive mobile data, and use it to obtain
dynamic parameters for infectious disease models. They
designed the M2H(mobility to Hawkes process) model:
used external data such as case data and mobile data to
complete the fitting and application of the Hawkes process,
and verified that its recurrence and epidemic prediction
results were better than the SEIR model.

3.2 Modeling the Real Social Systems

Compared with modeling dynamics, modeling the real so-
cial systems covers a wider range of studies and can use
more methods. If modeling dynamics mainly changes the
parameters in the three elements of the compartment model,
then modeling the real scene requires designing the settings
and transformations between the compartments. From the
perspective of modeling methods, the means of modeling
real scenes can be divided into 2 categories: compartment
subdivision and meta-population models.

3.2.1 Subdivided Models

Subdivided Models refer to further dividing one or more
compartments in SEIR according to certain rules. From the
perspective of mathematical modeling, compartment sub-
division is to change a compartment C to C1, C2,..., Cn,
and supplement the matching transformations. From the
perspective of infectious disease modeling, compartment
subdivision can be divided into two categories: horizon-
tal and vertical. The former solves the difference between
different individuals in the compartment, and the latter
solves the problem that SEIR’s compartment does not match
the real data. ”Horizontal” and ”Vertical” describe their
subdivision directions in the schematic.

Fig. 1. schematic of horizontal subdivision

The schematic of the horizontal subdivision is shown in
figure 1.

In the system of differential equations of the compart-
ment model, the horizontal subdivision has the form of
formula (3.2.1)-(3.2.11):

before : (3.2.1)
dX

dt
= −vxy (3.2.2)

dY

dt
= vxy − vyz (3.2.3)

dZ

dt
= vyz (3.2.4)

X + Y + Z ≡ N (3.2.5)
after : (3.2.6)

dX

dt
= −

n∑

i=1

vxyi (3.2.7)

dYi

dt
= vxyi

− vyiz (3.2.8)

dZ

dt
=

n∑

i=1

vyiz (3.2.9)

X +
n∑

i=1

Yi + Z ≡ N (3.2.10)

(3.2.11)

In the horizontal subdivision, the subdivided compart-
ments are ”equal in status”, and there is no transmission
between these compartments. Therefore, the horizontal sub-
division method is suitable for dealing with external fac-
tors, which are not related to epidemiological status, but
can affect the development of infectious diseases, such as
age

[27], [28], [29]
, occupation

[30]
and work intensity

[31]
. For exam-

ple Alessio Andronico and others
[27]

emphasized the impact
of different age structures on hospitalizations by looking
at histograms comparing the age distribution of hospital-
ized cases in French metropolis and French Guiana. And
through the differences in the proportion of hospitalizations
and deaths between the two, they further pointed out that
considering the age structure of the population necessary,
these differences were successfully predicted by the model
used. Andronico subdivides the compartments horizontally
into 8 age groups according to age, each coverint 10 years.

The schematic of the vertical subdivision is shown in
figure 2.
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Fig. 2. schematic of vertical subdivision

In the system of differential equations of the compart-
ment model, the vertical subdivision has the form of for-
mula (3.2.12)-(3.2.24):

before : (3.2.12)
dX

dt
= −vxy (3.2.13)

dY

dt
= vxy − vyz (3.2.14)

dZ

dt
= vyz (3.2.15)

X + Y + Z ≡ N (3.2.16)
after : (3.2.17)

dX

dt
= −vxy1

(3.2.18)

dY1

dt
= vxy1

− vy1y2
(3.2.19)

dYi

dt
= vyi−1yi − vyiyi+1 , where 1 < i < n

(3.2.20)
dYn

dt
= vyn−1yn − vynz (3.2.21)

dZ

dt
= vynz (3.2.22)

X +
n∑

i=1

Yi + Z ≡ N (3.2.23)

(3.2.24)

The compartments after vertical subdivision can be
transformed in sequence. Therefore, vertical subdivision
methods are suitable for modeling more detailed epidemio-
logical states such as presymptomatic, confirmed, isolated,
and hospitalization

[21]
. In fact, the process of extending the SI

model to the SEIR model can also be regarded as a vertical
subdivision, that is, the I compartment is subdivided into
E-I-R sub-compartments. For example, when discussing the
consequences of the relaxation of school control measures in
France, Laura Di Domenico and others

[32]
proposed an SEIR-

based compartment model, which subdivided the follow-
up status of severely infected patients vertically according
to treatment methods and medical conditions, including
hospitalization and ICU treat. Next, they can use data
from hospital admissions and ICU admissions to refine
the model, rather than uniformly treating them as infected
people and placing them in the I compartment.

The difference between the multi-stage model and dy-
namic parameters could be seen in table 5.

TABLE 5
The summary of horizontal and vertical subdivision

Aspect horizontal subdivi-
sion

vertical subdivision

purpose solves the difference
between individuals

matches the real data

relationship
between sub-
compartments

None can be transformed
in sequence

subdividing
standard

not related to epi-
demiological status

related to epidemio-
logical status

It is worth noting that horizontal and vertical segmenta-
tion methods are not contradictory. For research purposes,
researchers usually use a combination of the two. For exam-
ple Osmar Pinto Neto and others

[7]
proposed a SUEIHCDR

model that utilizes sophisticated compartment subdivision
methods. They add 4 compartments on the basis of SEIR:
U(unsusceptible), H(hospitalized), C(critical), and D(death).
Starting from the SI model, they did the following:

• Subdividing I into U and I horizontally, and the
less(or even un-) susceptible people are modeled.

• Subdividing I into E-I-R vertically, as the SEIR model
does. The R here refers specifically to recovered
rather than removed.

• Subdividing R into R and H horizontally, model-
ing the population requiring hospitalization. The
meaning of the transformation from I to R has also
changed from a broad cure to a specific natural cure.

• Subdividing H into H, C, and D vertically, modeling
the progression of hospitalized patients with pro-
gressive deterioration and eventual death.

• Complement the H-R, C-H transformation to model
the recovery process of hospitalized or critically pa-
tients.

3.2.2 Meta-population Models

After the limitations of individual differences and data
mismatches were addressed by subdivided models, the re-
searchers go on to employ meta-population models to more
accurately model the process of ”transmission”

[33], [34]
. In the

SEIR model, ”transmission” occurs uniformly between sus-
ceptible and infected compartments. But actually, in human
society, this process goes along social networks. The meta-
population model regards each node on the social network
as a population, and the transmission of infectious diseases
within the population is uniform, which is in line with
the SEIR model. Between populations, along every edge
of a social network, there is a flow of individuals. After
obtaining data on flows and policies (eg: not allowing the
movement of infected patients), a meta-population model is
built to model infectious diseases on this social network.

A general meta-population model differential equation
system is as follows:
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Fig. 3. schematic of meta-population model

dS

dt
= −multiply(S,β · I)

N
(3.2.25)

S = (S1, S2, ..., Sn)
T (3.2.26)

β = (βij)n∗n (3.2.27)

I = (I1, I2, ..., In)
T (3.2.28)

where (3.2.29)

x = (x1, x2, ..., xn)
T (3.2.30)

y = (y1, y2, ..., yn)
T (3.2.31)

multipy(x,y) = (x1 · y1, x2 · y2, ..., xn · yn)T (3.2.32)

Although β is used as the propagation matrix, the meta-
population model only focuses on some specific elements or
vectors, not a whole(and sometimes random) matrix. Write
βii as the propagation coefficient within the ith population,
then βi = (βi1, βi2, ..., βin) can be adapted into βi = βii ·
(ci1, ci2, ..., 1.0, ..., cin), and:

cij = 1.0, where i = j (3.2.33)
cij = (mobility(i, j), where i ̸= j (3.2.34)

The schematic of the meta-population model is shown in
figure 3.

The meta-population model provides an entrance for
researchers to introduce Spatio-temporal big data, and epi-
demic simulation based on the propagation matrix and
propagation map can achieve more refined quantitative re-
sults than the traditional compartment model. For example,
the paper published on PNAS by Ruiyun Li and other
researchers

[14]
simulated the development of the epidemic

after closing several high-traffic populations(social network
nodes), indicating that the high-traffic populations(nodes)
were first subjected NPIs for 8 weeks, and then intervened
others for 8 weeks can reduce the epidemic scale by 88%.
The degree of effectiveness exceeds that of 12 weeks of NPIs
on all populations, and the cost is less than the latter.

The use of meta-population models must be accom-
panied by dynamic parameters, and usually accompanied
by compartment subdivision, that is, each population is
a subdivided model instead of an SEIR model. In fact,
in research on COVID-19, the model is usually a meta-
population model where each population is a subdivided
model, and the model has dynamic parameters

[29], [35], [36], [37]
.

How multiple populations can be designed, compartments

subdivided, and dynamic parameters extracted depends
primarily on the purpose of the study and the data the
researcher has. A good model can make the best use of data,
obtain as much knowledge as possible, then help researchers
model abstract influencing factors, and finally complete the
research purpose.

3.3 Beyond Compartment Models - Agent-based Mod-
els
With the development of computer simulation technology
and artificial intelligence technology, researchers have been
able to introduce the agent-based model into the field of
infectious disease modeling. The modeling object of the
traditional model is the compartment, that is, the group.
In order to reflect the differences within the group, the
researchers subdivided the group. In this way, it is possible
to study the factors that lead to such internal differences
and their impact on the spread and development of the epi-
demic. But in subdivided models, even in a meta-population
model, the modeling object is still the population, the group.
The individuals inside each compartment are exactly the
same, and only reflect the characteristics of the group.

In fact, when the amount of data used for model fitting
remains unchanged, increasing the number of compart-
ments without limitation will only reduce the prediction
and simulation performance of the model. The agent-based
model takes the individual as the modeling object and
completes the modeling of the spread of infectious diseases,
various medical interventions or NPIs, and individual sub-
jective behavior by defining the state and behavior of the in-
dividual. The agent-based model usually simulates dozens
or even tens of thousands of individuals at the same time.
Through the statistics of individual states and behaviors, the
research purpose can be accomplished

[38], [39], [40]
.

In the application scenario of the agent-based model,
the state categories of individuals are usually many and
fine, and it is difficult to model by conventional subdivided
models. In the infectious disease model, the behaviors of
individuals usually include intrinsic behaviors (morbidity,
death, cure, etc.) and extrinsic behaviors (still, moving,
migrating, etc.), and the spread of infectious diseases is
carried out, checked, and determined for all individuals
in each time unit, and executed with a certain probabil-
ity to individuals who meet the conditions. For example,
Kim Sneppen and others published a paper on PNAS

[41]
,

using the agent model to complete the modeling of super
communicators, and deploying super communicator agents
in specific communication scenarios such as schools and
workplaces to explore how to formulate epidemic preven-
tion policies with the existence of super communicators. The
research work published by Jesús A. Moreno López1 and
others in Science

[42]
introduced electronic device tracking

data to explore the intervention process of the COVID-19
epidemic, especially how age and heterogeneity in modeling
parameter settings interact.

An agent-based model of the spread of COVID-19 has
been developed by a consortium of Russian research centers.
Since the development of an epidemic is a kind of a chain
reaction, the authors viewed the simulation process as an
analog of the method used to solve the neutron transport
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equation for a heterogeneous medium in a multigroup
approximation

[43]
. This model, demonstrating a good pre-

dictive power for metropolitan cities (Wuhan, New York,
and Moscow), is currently being adapted to simulation of
other viral respiratory infections and country-wide use.

On the basis of the above research, the researchers
pushed the agent-based model from theory to application,
and formed a series of agent-based model open source sim-
ulation platforms represented by covasim

[44]
and openABM-

covid19
[45]

. These open-source platforms focus on multiple
scenarios. They not only complete model design and simu-
lation operation, but also parameterize engineering factors
such as scenario characteristics, data analysis methods, and
data visualization methods, and form a complete open-
source code, homepage, published papers and user manual
documentation website.

3.4 AI techniques in Improving COVID-19 Modeling
Researchers also use AI techniques to solve the problem
of static and too ideal scenes of traditional models. This
combination of compartment model and AI is a hybrid
Physics-ML model

[46]
:

• Residual modeling,
• Output of physical model as input to ML model,
• Replacing part of a physical model with ML,
• Combining predictions from both physical model

and ML model,
• ML informing or augmenting physics-model for in-

verse modeling.

In the scenario where AI technology and compartment
model are combined to deal with infectious diseases, by
examining how models are output and the application of
the laws of physics, the first three are AI in the auxiliary
position, and the input and output of the model are still
completed by the compartment model. The latter two are
AI in the dominant position, and the input and output
are completed under the guidance of physical rules (the
principle of the compartment model). In addition, there is a
model that is made purely of AI methods and has nothing to
do with the compartment model. We call these three types,
in turn, Assisted, Coexistence, and Pure AI

• Assisted: The compartment model completes all the
processes such as modeling, parameter calculation,
simulation experiments, etc. AI methods are only
used to process part of the external data to achieve
the goal of dynamically changing compartment val-
ues or parameters.

• Coexistence: The designing, modeling, and simula-
tion experiments are completed by the AI model.
However, the principles of the compartment model
are used, such as how the population in the cabin
is divided, or the physical laws described by the
dynamic equations.

• Pure AI: Those studies that have nothing to do
with compartment models, but belong to the field
of infectious disease modeling

In this review, we briefly discuss and analyze the first two
categories.

3.4.1 AI Assist Compartment Model
Dynamic Parameter is the primary method of AI assisting
compartment model. Compared with the numerical values
or operators used in other dynamic parameter models, the
method here uses a complete, complex, and independent
AI model to obtain dynamic parameters and use them in
the compartment model. Salah Ghamizi and others

[47]
pub-

lished a paper in KDD’20, studying DN-SEIR, a data-driven
approach to evaluating the effective reproduction number
of the COVID-19 epidemic. They build an AI model(DNN)
to predict the reproduction rate(Rt), then use Rt to activate
SEIR model.

3.4.2 Coexistence of AI and Compartment Model
The knowledge of introducing kinetic equations into AI
models falls under a larger scope of research: AI research
with physical knowledge. In the field of infectious disease
modeling, such models incorporate SEIR, or other variants
of differential equations, into an AI model in the form of
the loss function. Lijing Wang and others

[48]
used a Causal-

based Graph Neural Network(CausalGNN) that learns spa-
tiotemporal embedding in a latent space where graph input
features and epidemiological context are combined via a
mutually learning mechanism. In their model, the graph of
disease dynamics is encoded through the time dimension.
The encoding layers include feature encoding, spatiotempo-
ral encoding, and finally causal encoding. At the top layer,
encoding results are calculated in the SIRD compartment
model, then SIRD’s results are used as the input of the next
time unit.

4 DATA, FACTORS, AND MODELING METHODS OF
RESEARCH INTERESTS

4.1 Data, Factors, Modeling Methods and Research In-
terests
At the end of the section ”Meta-population Model”, it is
mentioned that A good model can make the best use of data,
obtain as much knowledge as possible, then help researchers model
abstract influencing factors, and finally complete the research
purpose. In fact, after the outbreak of COVID-19, the research
on epidemic modeling has been inseparable from data,
factors, and models. All research today is not limited to
infectious disease itself but uses external data and models
to model certain or certain types of influencing factors, so
as to carry out simulation experiments and draw conclu-
sions. Data, factorsa and models will be referred to as DFM
hereinafter. Besides data, factors, and models, models are
the subject of exploiting data, at the core of the modeling
factor, as a tool for research purposes, and the most complex
part. Therefore, the classification, principles, and application
cases of models have been introduced in detail in chapter 2.
Here will be a brief introduction to data and factors.

4.1.1 Data
The data introduced in the infectious disease model can
be divided into case data and non-case data according to
content and source, and can be divided into point feature
data, array data, and geospatial data according to the data
format.
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Case data mathematically includes exposure, infection,
and removal data associated with the compartment, and
in practice includes three categories: confirmed, cured, and
dead. JHU(John Hopkins University)’s CSSE(Center for Sys-
tems Science and Engineering) is dedicated to building
GIS(Geographic Information System) and collecting data,
and after the outbreak of COVID-19, a database of cases
from countries around the world and states in the United
States has been established

[49]
. This database is accurate for

every country, updated every day, and is extremely widely
used. Related papers have been cited more than 6,900 times.

Besides, in order to complete the vertical subdivided
model and dynamic parameters, researchers introduced a
type of ”detailed case data”. In addition to the basic con-
firmed, cured, and death, it also includes critical illness,
ICU, hospitalization, asymptomatic infection, close contact,
nucleic acid testing, vaccination, etc. The case data is directly
related to the compartment itself in content, mainly from
the reports and epidemiological investigations of front-line
staff. This type of data is mainly used as the true value to
participate in the fitting process and is used as an index to
compare with some results during the simulation experi-
ments.

For example, Joshua S. Weitz
[50]

introduced a detailed
US case dataset to complete his social system self-feedback
model. That dataset includes 10 types of data: Positive, Neg-
ative, Hospitalization, ICU, Ventilator, Cure, Data Quality
Rating (Confidence Level), Death, Data Recording Time,
Floating Space, and each type has 3 statistical dimensions:
Daily new, Existing, Accumulated.

By definition, non-case data includes any data that is
not case data but is used by researchers to model infectious
diseases. Therefore, the discussion of non-case data focuses
on its data format. Each format represents a class of infor-
mation, has similar processing operators, and is applied in
the same way in the model.

Point feature data is a type of feature data with a key-
value format. For each object, such as country, country, POI
or even climate zone, has an ID and several dimension
attributes. Such data are processed into feature vectors by
traditional statistical methods and data mining methods,
which are then used to obtain dynamic parameters based
on characteristics or to build meta-population models. For
example the mobility data between each CBGs and POIs
can be described as a point feature dataset, where the
objects are CBGs or POIs, and attributes are traffic flows,
population, etc.

[24]
. Array data(or sequence data) is a type

of data expanded in the time dimension. Each moment
contains several attributes, which can be embedded into a
feature vector. Sequence data is very common in case data,
for example, daily confirmed data is sequence data. In non-
case data, sequence data is mainly used to extract dynamic
parameters. Methods for processing sequence data include
regression, fitting, and RNN-class deep learning models for
extracting sequence information.

Geospatial data is based on GIS and contains descrip-
tions of geographic information. In addition to geographic
information, each object also includes several attributes,
which can also be embedded into a feature vector. For
instance, Carleton and others

[15]
use geospatial data(ERA-

5 dataset) about UV rays to complete their research about

the influence of UV rays on the epidemic.
The summary of case and non-case data could be seen in

table 6 and table 7.

TABLE 6
The difference between case and non-case data

Aspect Case Data Non-case Data

source medical and
epidemiological
staff

everywhere

content the number of indi-
viduals correspond-
ing with compart-
ment

everything

usage as the true value extracting param-
eters and building
meta-population
models

TABLE 7
The difference between 3 types of non-case data

Aspect Point Feature
Data

Array data Geospatial
data

format key-value array(sequence) mostly
.shapefile
or .stata data

how to use embedding
and bringing
into formula

regression,
fitting, and
RNN-class
deep learning
models

pre-
processing
and bring
into formula

4.1.2 Factors
A factor is an abstract object that can be described in natural
language and is a bridge between research interests and
data. In order to achieve the research purpose, researchers
need to analyze several factors, then find the correspond-
ing data, and use the model to complete. For example,
in the authoritative paper Reconstruction of the full trans-
mission dynamics of COVID-19 in Wuhan

[20]
reviewing the

Wuhan epidemic, researchers proposed three main factors
that must be considered in the development of the COVID-
19 epidemic in Wuhan, namely ”pre-symptomatic infected
individuals”, ”NPIs” and ”human mobility”. Subsequently,
the researchers used detailed case data and several non-case
data to complete the model design with the compartment
subdivision, multi-stage model, and dynamic parameters,
and finally reviewed the Wuhan epidemic. On this basis,
they used the model results to calculate a number of in-
dicators to form valuable conclusions, such as COVID-19’s
Epidemiological characteristics comparing with SARS and
MERS, and judging the effectiveness of NPIs in Wuhan.

4.2 The Relationship between DFM and Research Inter-
ests

In the field of epidemic modeling, after being proposed,
research would be divided into two parts: model building
and simulation experiments. This research process can be
summarized in the following steps:
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• Research Interest
• Factors
• Origin Data
• Models
• Results of the task

The process of ”Factors to Origin Data” and ”Origin Data
to Models” had been discussed in Chapter 2, and the re-
search methods involved are in Chapter 3. Therefore, the
relationship between Factors, Data, and Model(DFM) and
the Research Interest will be discussed next, from the aspect
of research content.

4.3 Factors and Their DFM

Each type of factor corresponds to some type of data and
is associated with several models. The 6 main categories
of research factors are summarized below on the basis of
reviewing about 100 papers from Science, Nature, PNAS,
The Lancet, SIGKDD, TKDE, and AAAI.

4.3.1 Human Mobility
Mobility is a factor related to humans moving from here to
there.

In the SEIR model, each individual is uniformly dis-
tributed in an ideal space and performs a completely ran-
dom motion at a uniform speed. After the outbreak of
COVID-19, the error brought about by such false assump-
tions cannot be ignored. Human mobility is not only a factor
that directly affects the ability of the epidemic to spread
but also acts as a medium for most NPIs, such as isolation,
curfews, and school closures, to indirectly affect the spread
of the epidemic. Therefore, it is necessary to model crowd
mobility factors.

There are two types of data used to model mobility:
traffic data with start and end points, and a comprehensive
human mobility index. The former is geospatial non-case
data, used with the meta-population model, and the latter is
array-type non-case data, used with dynamic parameters.

Shengjie Lai’s team from Fudan University and others
[8]

regarded human mobility as a manifestation of NPIs and
finally explored the effect of non-pharmaceutical interven-
tions to contain COVID-19 in China by modeling human
mobility factors. Using data from mobile phone signaling
and travel, such as high-speed rail and plane ticket sales,
they calculated the population flow between cities in China.
Based on this flow, they completed the modeling of human
mobility, which is more in line with the epidemic transmis-
sion model in China’s NPIs environment than the homog-
enized SEIR model. Similar data and methods were used
by James D. Munday’s team from LHSTM (London School
of Hygiene and Tropical Medicine)

[51]
. However, in order to

achieve their purpose of studying COVID-19 transmission
under school reopening strategies in England, they estab-
lished a meta-population model with a school-household
network structure rather than a normal social network. They
used their not-publicly-available data from UK Department
for Education (DfE) to construct a network of schools linked
through households: each edge on the network of schools
is weighted by the number of unique contacts between
schools that occur through shared households. For example,

if in a given household, 2 children attend school i and
2 children attend school j, this corresponds to 4 unique
contacts between school i and school j.

In the comprehensive human mobility index, Google
Mobility is a dataset that will be released for free and
open to use until the end of COVID-19

[52]
. It divides the

human activities into 6 categories according to the place of
occurrence: Grocery & pharmacy, Parks, Transit stations, Re-
tail & recreation, Residential, and Workplaces, then records
the difference between the crowd activity intensity and the
reference value at a specific moment in turn. A work from
Pierre Nouvellet and his team

[53]
used comprehensive hu-

man mobility indexes such as google mobility to complete
the dynamic processing of effective reproduction number
at the time of infection (Rt,i), and finally quantitatively
calculated The transmission can be significantly decreased
with the initial reduction in mobility in 73%.

In summary, the human-mobility factor is represented
by traffic flow data and human mobility index, modeled by
meta-population and dynamic parameters.

4.3.2 NPI
Non-pharmaceutical interventions (NPIs) are the factors by
which humans, mainly governments or rulers, proactively
propose measures to intervene in the epidemic.

Among all six types of factors, NPIs have the most
extensive data sources and the most available modeling
methods. Like the fundamental position of dynamic param-
eters in the COVID-19 model, research on COVID-19 must
directly or indirectly consider NPIs. Research on indirect
NPIs will use other factors, especially human mobility or
human response, as a medium for modeling NPIs. Studies
that directly consider NPIs use multi-stage models to model
NPIs

[20]
.

In section 4.4, factors will be associated with a research
interest, where simulation and regression experiments will
be reviewed in detail. When dealing with NPIs factors, more
researchers consider simulating the effects of NPIs through
experimental settings in the simulation experiment part, so
as to complete the modeling and result from analysis of
NPIs. For example, after using the meta-population model
to model other factors such as human mobility, the simula-
tion of the closed isolation policy is realized by manually
interfering with the in and out the traffic of a certain
population

[24]
.

4.3.3 Ages
Age is a special, highly influential, mainly considered ”in-
dividual difference within the compartment”. In the basic
compartment model, individuals in the same compartment
are identical, and this inappropriate assumption is ad-
dressed by many modeling approaches. Among them, age
is more valued by researchers due to two characteristics:
compared with other factors such as income and social
background, age data has less private information and can
be easily counted and utilized; COVID-19 is highly sensitive
to age, and there are great differences in the severity rate,
mortality, and clinical manifestations of age groups.

The data processing the age factor is Point-feature Data,
which contains the proportion of each age composition of
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a specific population. Depending on the purpose of the
study, the data can be the age ratio of the entire popu-
lation or the age ratio of a specific diseased/susceptible
population. In terms of modeling methods, there are mainly
two methods for modeling age factors: unified processing
through weighted sum operator; horizontal compartment
subdivision according to age.

For example Davies and others
[11]

published a paper in
nature, which systematically analyzed the B.1.1.7 variant
outbreak in England from multiple dimensions such as age,
region, and medical characteristics. They used the differ-
ences in S gene target failures (SGTF) data in PCR tests
in different age groups and built a model based on this to
complete their research work. Zhang Juanjuan, Yu Hongjie
and others

[54]
sought to study how the COVID-19 outbreak

in China is dynamic. They started with the contact pattern,
built a detailed age-specific contact coefficient matrix based
on age differences, and then built a model to complete the
study.

4.3.4 Medical Resources
Medical resources include beds, ICU beds, number of
nurses, doctors, ventilators, vaccines, etc. Research on med-
ical resources is based on epidemic prediction, to explore
whether medical resources are sufficient and how to allocate
them

These research is relatively independent and will add a
sub-model dedicated to forecasting medical resource needs
on the basis of the compartment model used for epidemic
modeling. The data used in forecasting medical resources
is divided into two categories: clinical statistics of the Point-
feature type, and refined case data of the Array type. Clinical
statistics include severe disease rate, mortality rate, ICU
utilization rate, average ICU treatment time, etc., which can
be a single result or the results by age group and region. On
the basis of traditional diagnosis, cure, and death, refined
case data adds information such as admission time, onset
time, and ICU admission time of these cases.

Institute for Health Metrics and Evaluation (IHME) pro-
vides typical research in this area

[55]
. They first constructed

a compartment model for predicting the epidemic and then
constructed a data sequence of dead patients of different
ages through age data. Using the admission-death time
difference data of patients who died in different age groups,
they calculated the admission time of patients who died in
different age groups, and aligned and summed them on the
time axis to obtain the data series of admission times for all
patients who died. Based on this, they deduced the total
number of hospitalized patients in combination with the
death rate of hospitalized patients, and then obtained the
predicted results of medical resource demand according to
the length of hospitalization of different categories (normal,
severe) and the average consumption of various resources.

4.3.5 Human Response
Human response is the fact that people take the initiative
to take action out of psychological factors such as fear of
death and fear of illness to avoid being infected as much
as possible. Such a response will have an impact on the
development of an infectious disease based on the principles
established by the infectious disease model.

For example, Weitz and others
[50]

abstract the crowd’s
fear of death and infection as an awareness factor, then
calculate the value of this factor in real-time according to the
value of each compartment. They use this factor to correct
the parameters of the compartment model. In this way, a
self-feedback mechanism based on the dynamic parameter
method is built, which models the human response factor.

4.3.6 Vaccine
The vaccine is a broad class of research interests. Vac-
cine research should first add vaccine-related compart-
ments/parameters to the modeling process, and then obtain
results from improved compartment models with vaccines
for more detailed and specific epidemiological problems.

A study from Prof. Liu’s research team at LHSTM can
better represent the data, methods, and models of vaccine
research interests. This study

[56]
examines how COVID-

19 epidemic characteristics, population age characteristics,
government policies, and population movement all influ-
ence optimal vaccine prioritization strategies. In the data
phase, in addition to the above general characteristics, the
study also introduced data on the distribution rate of 4
vaccines based on COVAX vaccine distribution data and
then established the CovidM improved compartment model
to obtain the vaccine immunity compartment, vaccine sub-
group New bins such as clinical bins are eigenvalues. Fi-
nally, these values and statistical experiments were used to
obtain the comparison results of the advantages and disad-
vantages of different vaccine priority distribution strategies
on cLE, cQALY, and the other five indicators.

4.3.7 Other Aspect in Society like Economic
The other factors include economic, pollen, UV, and other
factors that are not widely studied. There is no universal
standard for the data introduced into the study of these
factors, or the modeling methods used.

For example, using the results predicted by basic in-
fectious disease model simulations, combined with pollen
concentration data, families and others

[57]
proved through

statistical mathematical experiments that higher pollen con-
centrations are associated with higher rates of COVID-19
transmission. Using a multi-population model, Bonaccorsi
and others

[58]
established a refined infectious disease model

based on Italian case data and population flow data, and
then used infectious disease indicators and economic indi-
cators to conduct cross-axis statistics to quantitatively calcu-
late the economic changes after the outbreak of COVID-19.
Relationship to changes in crowd activity.

4.4 From DFM to Research Interest: Simulation and
Regression Experiments
In order to achieve research purposes, researchers use a
lot of simulation and regression experiments to process the
output results of infectious disease models.

The simulation experiment is based on the infectious
disease model itself, by changing some real data, or using
hypothetical data as input, and using different model results
caused by different inputs to complete the research purpose.

Regression experiments are established outside the infec-
tious disease model, and the output of the infectious disease
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model is used as the input to complete the research purpose
through mathematical and statistical methods. Since this
survey mainly studies the infectious disease model itself,
the experimental part is only briefly described.

5 PREPAREDNESS FOR FUTURE OUTBREAKS

The need to predict the timing and intensity of outbreaks of
infectious diseases has been acknowledged for quite some
time and has emerged as an even stronger lesson from the
COVID-19 experience. Current initiatives to address this
question depend on strategies for integrating theoretical
process models with transmission patterns observed empir-
ically.

Promising research in this area relies on Artificial
Intelligence-based tools

[59], [60]
. The development of a pre-

diction pipeline combines distinct methodologies: machine
learning, causal diagrams, and their application to under-
standing the effect of large-scale drivers (e. g., climate,
behavior) on the evolutionary and ecological trajectories
leading to the next pandemic. The study of emergent dis-
eases has become a major research topic in biomedicine.
Its progress can be attributed to the decisive contributions
made possible by the reconstruction of host-pathogen net-
works as an outcome of machine learning strategies. In-
terpretable (non-‘black box’) Machine Learning has proved
particularly instrumental in establishing model–lab–field
virtuous feedback to challenge and improve predictive mod-
els. Cutting-edge success examples focus more on the struc-
tural and biochemical interactions between pathogen and
cell receptors leading to human–pathogen compatibility.
Assessment of the zoonotic potential in this association is
the main goal in such studies. Machine Learning approaches
that can predict protein folding structures are expected to be
added to the current toolbox already containing pipelines
to harness the power of the whole individual and popu-
lation genomes. Actionable predictions require robustness
and interpretability of outputs generated by pipelines based
on Machine Learning strategies. This might be achievable
by embedding AI algorithms with the capability to find
causes

[61]
. Artificial Intelligence and Causal Inference are

research areas that experienced formidable progress in the
last decades but only now are finding a common ground.

Such framework has been applied to assess the causal
role of environmental changes as drivers of vector-borne
diseases

[62]
. Santos et al. examined this relationship in de-

tail using the spread of visceral leishmaniasis (VL) in São
Paulo state (Brazil) as the case study. A two-step approach
estimated the causal effects (overall, direct, and indirect) of
deforestation on the occurrence of the VL vector, canine vis-
ceral leishmaniasis (CVL), and human visceral leishmaniasis
(HVL).

Integration of Machine Learning and Causal Inference
approaches raises the expectations of researchers in this
field and might provide the appropriate methodological
tools to face the challenges we encounter when studying
the effect of large-scale drivers (e. g., climate) on human
diseases. To achieve this, we need to conceive causal di-
agrams addressing evolutionary and ecological processes,
an area yet almost untouched

[63]
. Such diagrams provide

the necessary framework to describe the causal effects of

events that take place at distinct interacting levels, such
as ecological (deforestation), evolutionary (founder effect,
niche construction), and genetic (genetic basis of vector-
pathogen competence), thus helping us in forecasting the
future host-pathogen landscape under climate change and
intervention strategies.

6 SEARCH STRATEGIES

6.1 Search Words

COVID-19 modeling, Sars-cov-2, Compartment model,
Agent-based model, AI infectious disease modeling, Vaccine
modeling, infectious disease prediction and simulation.

6.2 Search Resource

• Journals and Conferences:Nature, Science, PNAS,
KDD, AAAI, TKDE, The lancet, NEJM, JAMA.

• Databases:Google Mobility, Oxford Government Re-
sponse Index, IHME medical resource.

• websites:Github, Google, Readthedocs(docs for cov-
asim/openABM, etc.).

6.3 Inclusion and Exclusion Criteria

• Date:researches after 2020.01.01,
• Exposure of interest:infectious disease modeling,
• Geographic location of study:None,
• Language:English,
• Participants:at least 1 professor,
• Peer review:None,
• Reported outcomes:None,
• Setting:None,
• Study design:build a model to simu-

late/predict/analysis COVID-19,
• Type of Publication:Nature/Science, PNAS, Top

Journals/Conferences in Epidemiology or Computer
Science.

7 CONCLUSION

After the outbreak of COVID-19, traditional compartment
models, like SEIR, which is commonly used to model in-
fectious diseases encountered extreme limitations. The main
source of this limitation is the various influences that the
social system exerts on the infectious disease system. To ana-
lyze these effects, researchers summarize them into abstract
factors, then find the corresponding data representation
factors, apply appropriate modeling methods to the data,
and complete the study through experiments.

This review does not divide the collection of papers
according to the research purpose, but starts from the pro-
cess of infectious disease modeling research, corresponds
to the data, methods, models and research interests, and
conducts survey work on the cross-sectional area of the
workflow. In terms of modeling methods, the researchers
use compartment subdivision, dynamic parameters, agent-
based model methods and AI-related methods. The com-
partment subdivision and dynamic parameters in turn opti-
mize the structure and value of the compartment model,
and the agent model changes the compartment model’s
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assumptions about the ”compartment”. AI-assisted or AI-
led models offer a new avenue for modeling infectious
diseases.

In terms of factors studied, the researchers studied 6
categories: human mobility, NPIs, ages, medical resources,
human response, and vaccine. Using data or modeling
methods, researchers try to achieve the modeling effect that
is closest to the actual situation, so as to provide their
own suggestions for quantitative analysis of the impact of
social systems, and even for the future transmission status
of infectious diseases and prevention and control strategies.
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