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Abstract. This paper proposes a statistical framework in which artificial intelligence
can assist human decision making. Using observational data we benchmark the per-
formance of each decision maker against the machine predictions, and replace decision
makers whose information process quality is dominated by machine predictions based
on the proposed criteria. The statistical frameworks that we proposed are applicable
based on both Bayesian principles and frequentist principles of hypothesis testing and
confidence set formation. Our theoretical discussion is illustrated by an example of
birth defect detection, using a large data set of pregnancy outcomes and doctor diagno-
sis from the Pre-Pregnancy Checkups of reproductive age couples that are provided by
the Chinese Ministry of Health. Based on doctor’s diagnosis, we find doctors, especially
those who are from rural areas, can be replaced by the machine learning prediction.
Statistically, the overall quality of our algorithm on a testable data set outperforms the
diagnoses made only by doctors, with higher true positive rate and lower false positive
rate. Our example also informs that decision making with artificial intelligence is more
beneficial to poor areas relative to developed places.
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1 Introduction

In the era of machine learning, novel Artificial-Intelligence (AI) algorithms are capable of
learning important features from both specialists and a large amount of data, and assisting
in decision making in many scientific and engineering disciplines. For example, Gulshan
et al. (2016) use a deep learning algorithm to detect diabetic retinopathy in retinal fundus
photographs. Rudin et al. (2012) develop a machine learning model to assist power compa-
nies in predicting potential failures of components and systems. Babylon Health develops
an AI based online diagnosis system that can provide triage advice to patients, and exper-
iments show that their system has comparable accuracy with human doctors (Razzaki et
al. (2018)). Rasch et al. (2003) use AI technology to build decision support system in mil-
itary. Liu et al. (2017) use convolutional neutral network to help doctors detecting cancer
metastases. Castro et al. (2017) use natural language process (NLP) techniques to iden-
tify patients with cerebral aneurysms from electronic medical record (EMR). Aletras et al.
(2016) use NLP techniques to build models that can learn to predict the court’s judgment
based on textual content from corresponding cases. Currie and MacLeod (2017) analyzes
the decision making of physicians, and informs the possibility of improvements that can
both benefit patients and decrease medical expenses.

Much of the literature compares the performance of machines with the representative
(average) person. For example, Rajpurkar et al. (2017) trained a 34-layer convolutional
neural network to process ECG sequences and compared its performance to 6 cardiologists.
Esteva et al. (2017) proposed a deep convolutional neural network structure for skin cancer
classification and claimed that the model outperforms the average dermatologist. Kermany
et al. (2018) proposed an image-based deep learning model to classify macular degeneration
and concluded that it outperforms human. The conclusions of these papers are mostly based
on observing an average pair of true positive and false positive rates that lie strictly below
the Receiver Operating Characteristic (ROC) curve formed by the machine classification
algorithm, implying that machines can achieve a higher True Positive Rate (TPR) for a
given False Positive Rate (FPR), or a lower FPR for a given TPR.1 However, an important
message of our current paper is to caution against such interpretations without a deeper
understanding of the human decision making process. Firstly, such findings can be ratio-
nalized not only by the superior information quality of machine learning algorithms, but
also by the incentive heterogeneity of human decision makers who can be as intelligent as
machine learning algorithms in processing statistical information from observational data.

1FPR is the number of negative events with wrong classification divided by the number of actual negative
events, and TPR is the number of positive events with correct classification divided by the number of total
positive events. A pair of FPR/TPR depicts the tradeoff between size and power for classical hypothesis
tests.
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Secondly, the FPR/TPR pairs of human decision makers are not precisely measured, espe-
cially when the number of cases that the decision makers see is not large. The example in
our paper clearly shows strong heterogeneity in human decision makers; it also presents that
the randomness in measuring decision makers play a key role in comparing the performance
of human decision makers and machine algorithms.

To illustrate the first issue of concern, consider Figure 1, in which a collection of human
decision makers, denoted j “ 1, . . . , J , all lie approximately on the machine-learned ROC.
This is the case if they employed decision rules Ŷi “ 1 pp̂ pXiq ą ciq with the same p̂ p¨q

function but with different individual cutoff points ci. Yet, after aggregating over all decision
makers, the aggregate TPR/FPR pair lies visibly below the ROC.

[Figure 1 about here.]

This is an immediate artifact of Jensen’s inequality due to the concavity of the observed
ROC, and bears no implication on the comparison between the qualities of the machine
learning algorithm and human decision makers. As shown in Feng et al. (2019), an optimal
ROC is necessarily concave. This simple observation appears to have gone largely unnoticed
by the literature.

More precisely, as long as the collection of humans’ individual TPR/FPR points can
be represented by a concave curve, the aggregated humans’ TPR/FPR must fall below the
curve of humans’ individual TPR/FPR points. Let αj denote FPR and βj denote TPR, and
suppose they are related by β “ f pαq, where f p¨q is concave. Then by Jensen’s inequality:

β̄ “
1

J

J
ÿ

j“1

βj “
1

J

n
ÿ

j“1

f pαjq ă f

˜

1

J

J
ÿ

j“1

αi

¸

“ f pᾱq .

The foregoing discussion highlights the need to present a framework to statistically compare
the performance of machine algorithms and human decision.

A machines binary classification rule is typically based on D “ 1pppxq ą cq, where x is
a set of features, the propensity score function p pxq is learned from a large amount of data,
and c is a cutoff threshold. The entire ROC curve will be generated across various cutoff
threshold c. In the meanwhile, using historical data, we can compute a fixed FPR/TPR
pair for each individual decision maker.

With assumptions 1 and 2 in Section 2, we can compare the machine ROC and the
individual TPR/FPR pair when it is precisely known without sampling errors. For example,
if human’s TPR/FPR pair is precisely known below the machine ROC curve, we can find
a collection of points on the machine’s ROC curve which has a larger TPR and/or smaller
FPR than the human decision maker. As shown in Figure 2, these correspond to the fraction
on the ROC curve between A and B.
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However, in reality only a noisy estimate of the TPR/FPR pair can be obtained from
empirical data. This paper directly address the issue of accounting for sampling errors in
making such a comparison. In particular, we address two important questions. The first is
when the machine is considered to have higher quality than a doctor has. Conditional on a
verdict that the machine wins, the second question pertains to which point on the machine
ROC curve should be used for future decision making.

We tackle these two issues from both a Bayesian inference framework and a framework of
frequentist classical analysis. In the Bayesian setting, we compute the posterior probability
that the individual TPR/FPR pair lies below the ROC and search for a point on the ROC
that dominates both the TPR and FPR with the largest posterior probability. Whether to
declare the machine a winner is determined by a level of confidence that is chosen a priori.
In the classical frequentist setting, we formulate the choice using both hypothesis testing
and confidence region formation. The classical approach also requires a confidence level
that is chosen a priori.

A uniform decision of relying exclusively only on machine or humans is likely to less
optimal than an alternative framework that can differentiate the subset of humans who cor-
rectly process more information than that is available to the machine algorithm from those
who are dominated by the machine algorithm. For example, Liang et al. (2019) proposes a
machine learning model to make diagnosis on some childhood diseases. Comparison of the
machine model with physicians (physicians are grouped according to their practice experi-
ence years) shows that their model outperforms the junior physician groups, but marginally
underperforms senior physician groups. It is essential to design a rigorous framework to
compare individual decision makers with machines. To the best of our knowledge, such a
framework has yet to be developed. The goal of our paper is to fill this gap and formalize
such a statistical approach. Our framework selects a winner between each human decision
maker and the machine algorithm, and and applies the winning decision maker to classify
future observations. In other words, future decision making is done through a combination
of capable humans and the machine algorithm. This can be done through an AI assisted
doctor’s decision rule: the less-capable doctors (compared to AI algorithm) always follow
the suggestion of artificial intelligence (or replaced by artificial intelligence), whereas skillful
doctors (similar or better than AI algorithm) do not follow.

We apply our statistical framework to analyze doctor’s medical diagnosis decision. In
particular, we employ a unique dataset of National Free Pre-Pregnancy Checkups (NFPC)
that dates back to 2010. This is a free health checkup project for conceiving couples and is
conducted across 31 provinces in China. The data set includes doctor’s ID and diagnosis of
adverse pregnancy outcomes. We first split the overall dataset into two equal parts. The
first part is used to compare doctors with machines. In particular, we employ a random
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forest based method for diagnosis of risky pregnancy, which achieve an area under curve
(AUC) of 0.6834. Under 95% confidence level, our statistical framework suggests that the
random forest algorithm outperforms 44% doctors. We also find that doctors from rural
area and under-developed cities have a relatively worse performance relative to others. We
then replace less capable doctors with machines. The second dataset is used to validate
a combined decision making strategy only by the more capable doctors and machine algo-
rithms. In the second data set, the combined decision making achieves an increase of of
43.8% on TPR (the rate of correctly judging birth defect as high-risk pregnancy) and a
reduction of 9.4% on FPR (the rate of misjudgment of normal birth as high-risk pregnancy)
under Bayesian approach. The potential of improving accuracy using machine learning
algorithms is substantial.

Our paper relates to at least two strands of literatures. First, it reflects on decision
making with machine learning technology. For example, Wang et al. (2016) shows the
usage of multitask machine learning algorithms in solving high-dimensional coordination
decision-making policies for large-scale manufacturing systems. Berk (2017) analyzes the
impact of machine learning tools on helping parole boards get better decision. Everett et
al. (2018) creates decision-making agents for robotic motion planning using reinforcement
learning methods. Kleinberg et al. (2018) documents that the usage of machine learning
mechanisms can help judges in making good bail decisions. Nieto et al. (2019) finds that
using machine learning algorithms can support university managers in academic decision
making. Feng et al. (2019) researches the properties of ROC curves in decision making and
presents a statistical inference framework for the ROC curve.

Second, our statistical framework of combining machines with humans in decision mak-
ing relates to the economic analysis of the human and robot race. Since Keynes (2010),
economists contemplates about the consequence of replacing human workers with new tech-
nology introduction. Recently, Acemoglu and Restrepo (2017) discover that rapidly aging
countries are more likely to adopt industrial robots. Acemoglu and Restrepo (2018b) ana-
lyze the shape of the economy if new technologies such as AI will make some manual labor
redundant. Acemoglu and Restrepo (2018a) investigate the differential impact on produc-
tivity and wage structure when machines take over the work of either low-skill labors or
high-skill labors. Brynjolfsson et al. (2018) analyze the suitability for machine learning in
different kinds of jobs and propose that achieving the potential of machines requires reforms
of existing job content.

The rest of this paper are as follows. Section 2 presents the statistical model of human
machine comparison. Section 3 provides the data and machine algorithm in this study.
Section 4 conducts the empirical analysis of machine algorithms and human decision makers.
Section 5 concludes.
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2 Machine Learning and Human Decision Making

In a sample dataset with labels Yi P t0, 1u, and associated features Xi, i “ 1, . . . , n:

TPR “

n
ÿ

i“1

Yi pYi{
n

ÿ

i“1

Yi,FPR “

n
ÿ

i“1

p1 ´ YiqpYi{
n

ÿ

i“1

p1 ´ Yiq.

where Ŷi P t0, 1u is a predictor for Yi. However, to account for sampling error, we need to
introduce population analogs of TPR and FPR.

In order to make a comparison between decision maker and machines we need to make
the following two assumptions:

Assumption 1. The machine ROC represents a propensity score model of prediction:
1 pp pxq ě c1q. The decision maker’s decision is also based on a model 1 pq pxq ě c2q. p p¨q

and q p¨q can be correctly specified or misspecified. There is no incentive-features dependence
across cases for each individual decision maker: c2 does not depend on x, i.e. each decision
maker uses the same weights for type I and II errors for all his/her cases.

Assumption 2. The machine ROC is precisely known without any sampling error.

We have assumption 1 since difficulties with interpreting the ROC arise if individual
decision makers (e.g. doctors) adopt difficult weights for trading off size and power, or
when a given doctor adopt difficult weights for trading off size and power for different cases
based on observed and unobserved features, as Appendix A.1 proposes. 2 Therefore, it is
necessary to assume away incentive-feature dependence for individual decision maker before
a meaningful comparison between machine and human can be made.

Assumption 2 can be justified by the fact that the sample size used to estimate the
machine ROC is typically orders of magnitude larger than the number of cases for an
individual decision maker. For instance, more than 1 million cases are used to estimate
the ROC curve in our birth defect example, whereas the average cases per decision maker
(doctor) is only about 40.

Sampling errors arise from the fewer number of observations for each individual decision
maker. We focus on one individual decision maker, and we are interested in the parameter
of the population pair of true positive and false positive rates for this decision maker:

2Related properties of machine ROC and human FPR/TPR pairs under incentive heterogeneity and
information asymmetry are also discussed in Appendix. A.1
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θ0 “ pHFPR0,HTPR0q, where

HTPR0 “
1

p
EYiŶi “

1

p

ż ż

y1 pq pxq ě c2q dydx,

HFPR0 “
1

1 ´ p
E p1 ´ Yiq Ŷi “

1

1 ´ p

ż ż

p1 ´ yq1 pq pxq ě c2q f py, xq dydx.

2.1 Comparison between Human FPR/TPR Pairs and Machine ROC
Curves

Figure 2 shows the ROC curve of an AI algorithm and a FPR/TPR pair for a human
decision maker. If the human FPR/TPR pair θ0 is above the machine’s ROC curve, it
means that given HFPR0, the machine has a lower TPR than human has; and given HTPR0,
machine has a larger FPR than human has. In this sense, human is better than the machine
algorithm.3

[Figure 2 about here.]

If the human FPR/TPR point is below the machine ROC curve, one can always find
a point A on the machine ROC curve matching human HFPR0 but with a higher TPR.
By the same token, one can find a point B on the machine ROC curve matching human
HTPR0 but with a lower FPR. Any point between point A and B on the machine ROC
curve has a larger TPR and a smaller FPR than the human (HFPR0,HTPR0) pair; in this
sense machine decision rule corresponding to a ROC curve from A to B is better than the
human decision maker. The segment of the curve to the left of B has a smaller FPR but
a lower TPR than human does. Points on this segment are not comparable to the human
decision maker. By the same token, the segment of curve to the right of A has much higher
TPR but larger FPR than human does, hence is neither superior nor inferior to the human.
Lemma 2.1 provides a formal statement.

Lemma 2.1. Denote (HFPR0,RTPR0) and (RFPR0,HTPR0) as two points on the ma-
chine’s ROC curve sharing the same HFPR0 and HTPR0 of human decision maker respec-
tively, if (HFPR0,HTPR0) is below the ROC curve, then the portion of the ROC curve
between (HFPR0,RTPR0) and (RFPR0,HTPR0) corresponds to better decision rules.

Suppose now θ0 lies below the ROC, to be more precise about the sense by which the
machine is “better” than the decision maker, recall that θ0 is a population parameter,
measuring the average human performance after seeing an infinite number of cases. This

3With assumption 1, θ0 lies above the ROC if human correctly uses at least as much information as the
machine.
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only means that on average, the machine can improve on the decision maker by increasing
TPR given FPR, or reducing FPR given TPR. However, unless the machine can make a
judgment with perfect accuracy, for a given case, the decision maker can either underperform
or outperform the machine. From this point on, we will agree that our goal is to find out
whether θ0 is above or below the ROC, or whether the machine is better than the individual
decision maker on average.

Typically we do not observe θ0, even though we can estimate it using a sample of
observations:

θ̂ “ pFPR,TPRq

where, with Ŷi “ 1 pq pXiq ě c2q,

TPR “

n
ÿ

i“1

YiŶi{
n

ÿ

i“1

Yi, FPR “

n
ÿ

i“1

p1 ´ Yiq Ŷi{
n

ÿ

i“1

p1 ´ Yiq .

In the presence of sampling uncertainty, the inference problem pertains to how do we
make probabilistic statement regarding whether θ0 is above or below the ROC. Note that θ̂
is a vector function of a multinomial distribution. It can be simulated but does not admit
an analytical density function or distribution function. Large sample analysis however, is
facilitated by the joint asymptotic distribution of the FPR/TPR pair.

Lemma 2.2. The joint asymptotic distribution of a human’s FPR and TPR pair is multi-
variate normal.

The proof of lemma 2.2 is given in Appendix A.3. Essentially it consists of an application
of the Delta method to a bivariate function of a four-dimensional multinomial distribution,
which itself is asymptotically multivariate normal.

A word of caution about the asymptotic distribution of

?
n

´

θ̂ ´ θ0

¯

d
ÝÑ N p0,Ωq .

Note that this is under the assumption that human behavioral rule is

Ŷi “ 1 pq pXiq ě c2q

In other words, decision makers know their models already before applying to the ob-
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servations in the dataset. 4 As a consequence of Lemma 2.2, a typical confidence set of
FPR/TPR pair with α confidence level is asymptotically of oval-shape. As shown in Figure
3, the blue ellipse is an 95% confidence level for a decision maker in our data set described
in the next section. The yellow points are the bootstrapped FPR/TPR pairs.

[Figure 3 about here.]

We provide two approaches to address the question of sampling uncertainty. The first
is based on Bayesian analysis principle, and the second is based on classical frequentist
inference.

2.2 The Bayesian approach

The Bayesian approach is potentially easier to interpret than the classical frequentist method
is. A Bayesian method requires specifying a prior distribution for the decision maker’s θ,
and the likelihood of the data given θ. Recall that this model is completely specified by
three parameters: p1 “ EY Ŷ , p2 “ E p1 ´ Y q Ŷ , and p3 “ EY

´

1 ´ Ŷ
¯

. The data follows
a multinomial distribution with four categories. Conceptually, θ “ h ppq, h “ ph1, h2q.
p̂ “ pp̂1, p̂2, p̂3q are sufficient statistics summarizing the data. The multinomial distribution
is a completely specified parametric model. It allows for exact likelihood based Bayesian
posterior distribution computation. Given p, the data likelihood is

L pY |pq “ pnp̂11 pnp̂22 pnp̂33 p1 ´ p1 ´ p2 ´ p3q
np1´p̂1´p̂2´p̂3q .

Given a prior π ppq, the posterior distribution can be computed (e.g. by simulation)

p pp|Y q 9π ppqL pY |pq .

Projecting the simulated p pp|Y q onto θ “ h ppq gives a simulated posterior distribution for
θ. Credible regions can be constructed by smoothing or contouring.

It is well known that Dirichlet prior is a conjugate prior for multinomial distribution to
allow for analytic posterior calculation. It includes as a special case the uniform distribution
over p, and also includes the Beta distribution as a special case when p is one dimensional.
To our knowledge using Dirichlet prior to conduct posterior Bayesian inference in ROC
curve is a new contribution.

Consider a Dirichlet prior on the Kp“ 4q simplex p1, . . . , pK , such that p1 ` . . . `

pK “ 1, with parameters α1, . . . , αK . α1 “ . . . “ αK “ α is called a symmetric Dirichlet
4There is no model estimation uncertainty for the decision makers, and the decision makers do not try to

learn a better model to improve prediction from the sample observations. In the presence of decision makers
learning from the data, the analysis will be much more complex.
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distribution. Given symmetry, α “ 1 corresponds to a uniform prior on p1, . . . , pK . The
posterior distribution is also Dirichlet with parameters

α̂k “ αk ` np̂k, k “ 1, . . . ,K.

with uniform prior, the posterior Dirichlet distribution has parameters 5

α̂k “ 1 ` np̂k, k “ 1, . . . ,K.

To simulate the posterior distribution of θ “ pθ1, θ2q, for s “ 1, . . . , S, make draws from
the Dirichlet distribution with parameters α̂k “ 1 ` np̂k, k “ 1, . . . ,K. This is generated
by setting

psk “ ysk{

K
ÿ

j“1

yjs, k “ 1, . . . ,K,

such that ysk “
řα̂k

t“1 Ets and Ets are unit exponential variables independent from each
other. Conventional confidence and credibility levels suggest that we are conservative when
making decisions to replace humans with machines. Specifically, only w For each ps “

ppsk, k “ 1, . . . ,Kq, calculate

θs “ h ppsq .

We can calculate the posterior probability that the θ lies below the ROC:
ż

θ below ROC
p pθ|Y q dθ.

or the posterior probability of human decision maker being dominated by the ROC, by the
fraction of times where θs lies below the ROC.

In addition to the posterior probability that θ lies below the ROC, we are also interested
in the maximum posterior probability of a set of θ that are dominated simultaneously by a
single point on the ROC:

maxposteriorprob ” sup
aPp0,1q

ż

θ1ěa,θ2ďgpaq

p pθ|Y q dθ. (1)

where the machine ROC has been represented by θ2 “ g pθ1q. Both of these can be com-
puted by simulation: for θr, r “ 1, . . . , R simulated draws from the posterior distribution,

5 For more information see https://en.wikipedia.org/wiki/Dirichlet_distribution
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they are estimated by

1

R

R
ÿ

r“1

1 pθr below ROCq

and

sup
aPp0,1q

1

R

R
ÿ

r“1

1 pθ1r ě a, θ2r ď g paqq .

An alternative to exact finite sample Bayesian analysis is a semiparametric asymptotic
Bayesian method in Kim (2002), which combines a prior distribution for θ with the approx-
imate normal distribution of θ̂ around θ to form a posterior distribution. This method can
be formally justified by the convergence of the finite sample Bayesian posterior distribution
to the approximate normal limit, Chernozhukov and Hong (2003). Let π pθq be a prior
distribution for θ, e.g. the uniform distribution on the two dimensional unit square. It has
been shown that

?
n

´

θ̂ ´ θ0

¯

d
ÝÑ N p0,Ωq or θ̂

A
« N

˜

θ,
Ω̂

n

¸

.

where Ω can be estimated analytically or by the bootstrap. The entire distribution of
fθ̂´θ0

p¨q can also be estimated by the bootstrap. The above convergence in distribution can
be strengthened to convergence in the moment total variation norm in Chernozhukov and
Hong (2003). The asymptotic posterior distribution of θ is defined through

p
´

θ|θ̂
¯

9π pθq f̂θ̂´θ0

´

θ̂ ´ θ
¯

«π pθq exp

ˆ

´
n

2

´

θ ´ θ̂
¯1

Ω̂´1
´

θ ´ θ̂
¯

˙

.

When a (diffuse) uniform prior is chosen, π pθq ” 1,

p
´

θ|θ̂
¯

9f̂θ̂´θ0

´

θ̂ ´ θ
¯

« exp

ˆ

´
n

2

´

θ ´ θ̂
¯1

Ω̂´1
´

θ ´ θ̂
¯

˙

.

The 1´α confidence region Ŝ constructed either by the approximate normal distribution or
by bootstrapping therefore corresponds to the 1´α Bayesian credible region using a uniform
prior distribution and similar constructions. A variety of Bayesian techniques (e.g. highest
density regions) can be used to constructed posterior credible regions using possibly non-
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uniform prior densities. These often involve the use of simulation methods, such as MCMC.
The normal approximation does present the drawback that the support is not limited to
p0, 1q. However for large sample sizes confidence sets at conventional levels should well
reside within p0, 1q with large probabilities.

2.3 The Frequentist approach

Consider the following heuristic procedure.

• Form a confidence set Ŝ for θ0, for example based on bootstrapping or the asymptotic
normal distribution of θ̂ around θ0.

• For each s P Ŝ, define As “ tθ : θ1 ď s1, θ2 ě s2u. In other words, As is the set of
points that are better than s (namely, lower FPR and higher TPR).

• Next define

A “ \sPŜAs

A is the set of points that are better than all the points in Ŝ in the above sense.

• Next define

Ā “ A X ROC

Namely, Ā is the set of points on the ROC that simultaneously dominates all the
points in Ŝ.

How do we provide a statistical probabilistic statement justifying this procedure? In a
classical approach, θ0 is a fixed number and not a random variable. It is either above or
below the ROC, without an associated probability. The confidence set itself is a random
set, such that

P
´

θ0 P Ŝ
¯

« 1 ´ α.

Namely, if the world is to repeat 100 times, about 95 times θ0 P Ŝ. Consequently, Ā is a
random set, that is possibly empty, such that

P
`

all points on Ā dominates θ0
˘

« 1 ´ α.
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What about the probability of the random event of A X ROC ‰ H? Obviously

Pθ0 pA X ROC ‰ Hq

depends on θ0 and is unknown. It can be estimated by replacing θ0 with θ̂ and iterates on
the bootstrap procedure. Depending on where the true θ0 lies, Pθ0 pA X ROC ‰ Hq can be
anywhere between 0 and 1.

In the Bayesian setting, the event of A X ROC ‰ H then has the interpretation that
1 ´ α portion of the posterior distribution of θ lies below the ROC. For example, there
exists a point on the ROC that simultaneously dominates 95% of the posterior distribution
of θ. A Bayesian method can say more than constructing a posterior credible region. As
discussed before, the posterior probability that θ lies below the ROC can be computed by
numerical integration or estimated by simulations.

In the classical/frequentist framework, θ0 is a fixed number and not a random variable,
and we are not allowed to make probabilistic statement about it. We therefore turn to a
Hypothesis testing setup, to formulate tests of

H0 : θ0 lies below ROC against H1 : θ0 lies above ROC.

The roles of the null and alternative hypotheses can be reversed, depending on which one
we are more willing to theorize on, a priori. This is a test of composite null versus composite
alternative hypotheses. In general, finding the uniformly most powerful test is difficult.

Suppose we represent the ROC curve by θ2 “ g pθ1q, where g p¨q is known, increasing,
and concave. Then we can rewrite

H0 : θ20 ď g pθ10q against H1 : θ20 ě g pθ10q .

Let t “ θ2 ´ g pθ1q, then the hypotheses can be restated as

H0 : t0 ď 0 against H1 : t0 ě 0.

An asymptotic test can then be based on combining the Delta method with a one-sided
t-test.

For G0 “ g1 pθ10q, B “ p1 G0q, it can be shown that

?
n

`

t̂ ´ t0
˘ d

ÝÑ N
`

0, BΩB1
˘

.
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Let Ĝ “ g1
´

θ̂1

¯

, B̂ “

´

1 Ĝ
¯

, Ω̂ p
Ñ Ω, and z1´α the standard normal 1 ´ α percentile:

P

˜?
n

`

t̂ ´ t0
˘

a

B̂Ω̂B̂1
ě z1´α

¸

Ñ α

An approximate size α test then implies rejection when
?
nt̂{

a

B̂Ω̂B̂1 ą z1´α. For conven-
tional levels of α, typically we do not reject when t̂ ď 0.

A typically test rejects when t̂ ě ĉ1´α, for a suitable chosen ĉ1´α such that

P
`

t̂ ě ĉ1´α|t0 “ 0
˘

Ñ α.

The Delta method sets ĉ1´α “

b

B̂Ω̂B̂1

n z1´α There are alternative ways to implement ĉ1´α.
One is the so-called asymptotic delta method: for large R, draw for r “ 1, . . . , R, ωr from
N

´

0, Ω̂n

¯

. Set ĉ1´α as the 1 ´ α percentile of the empirical distribution of

θ̂2 ` ω2r ´ g
´

θ̂1 ` ω1r

¯

´

´

θ̂2 ´ g
´

θ̂1

¯¯

Another alternative is bootstrapping. Set ĉ1´α to the 1 ´ α percentile of the empirical
distribution of t̂b ´ t̂, b “ 1, . . . , B, where t̂b’s are bootstrapped replications of t̂.

For completeness, we also describe the reverse testing problem:

H0 : θ0 lies above ROC against H1 : θ0 lies below ROC.

This is appropriate when we only replace a human decision maker with the machine when
there is overwhelming evidence that the machine is better. A priori, we hold confidence in
human being, unless there is strong evidence suggesting otherwise.

H0 : θ20 ě g pθ10q against H1 : θ20 ď g pθ10q .

Let t “ θ2 ´ g pθ1q, then the hypotheses can be restated as

H0 : t0 ě 0 against H1 : t0 ď 0.

We reject if t̂ ď ĉα. There are several choices for ĉα.

• Choice 1:

ĉα “ zα

d

B̂Ω̂B̂1

n
.
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• Choice 2: asymptotic delta method: for large R, draw for r “ 1, . . . , R, ωr from
N

´

0, Ω̂n

¯

. Set ĉα as the α percentile of the empirical distribution of

θ̂2 ` ω2r ´ g
´

θ̂1 ` ω1r

¯

´

´

θ̂2 ´ g
´

θ̂1

¯¯

• Bootstrapping. Set ĉα to the α percentile of the empirical distribution of t̂b ´ t̂, b “

1, . . . , B, where t̂b’s are bootstrapped replications of t̂.

The next question regards whether the constructed confidence set can be used to test
H0 against H1. Recall that a conventional confidence set is given asymptotically by

tθ : n
´

θ ´ θ̂
¯1

Ω´1
´

θ ´ θ̂
¯

ď χ2
2,1´αu,

Now consider two tests.

• Test 1 T1: reject if θ̂2 ą g
´

θ̂1

¯

and
´

θ̂1, g
´

θ̂1

¯¯

is not in the confidence set.

• Test 2 T2: reject if θ̂2 ą g
´

θ̂1

¯

and no point of the ROC is in the confidence set.

T1 rejects if θ̂2 ą g
´

θ̂1

¯

and if

n
”

Ω̂´1
ı

2,2

´

θ̂2 ´ g
´

θ̂1

¯¯2
ě χ2

2,1´α,

This test is unlikely to have the correct size. By partitioned matrix inversion

”

Ω̂´1
ı´1

2,2
“ σ22 ´

σ2
12

σ11

However, under the null:

θ̂2 ´ g
´

θ̂1

¯

« θ̂2 ´ θ2 ´ G0

´

θ̂1 ´ θ1

¯

„ N
`

0, σ22 ` G2
0σ11 ´ 2G0σ12

˘

.

The test statistic distribution is not χ2
2. Of course size calibration is possible, but then it

amounts to the asymptotic one-sided t-test.
T2 rejects if θ̂2 ą g

´

θ̂1

¯

and if

inf
x:x2“gpx1q

n
´

x ´ θ̂
¯1

Ω̂
´

x ´ θ̂
¯

ě χ2
2,1´α.

The left hand side is the J-statistic for one overidentifying restriction, and has an asymp-
totic χ2

1 distribution (one degree of freedom, not two). Since χ2
2,1´α ě χ2

1,1´α, the null
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rejection probability is less than α. Therefore this test is conservatively valid (undersized),
and is likely to be less powerful. This is in addition to the power loss from essentially using
a two sided test for a one-sided hypothesis. It is again possible to calibrate size.

Next, test T3 rejects if θ̂2 ą g
´

θ̂1

¯

and if there exists a point on the ROC that has
worse TPR and FPR simultaneously for all points in the confidence set. T3 is obviously
even more conservative than T2. Therefore it will be undersized, and less powerful. These
theoretical properties can all be validated in Monte Carlo simulations.

There are many alternative ways to construct confidence sets Ŝ such that

P
´

θ0 P Ŝ
¯

« 1 ´ α.

Each corresponds to a construction of Ā “ A X ROC. Which one leads to a “better” Ā

holding α constant?
Perhaps the length of Ā can be optimized. Since it is random, perhaps use the expected

length of Ā. Denote the ROC by θ2 “ g pθ1q. Suppose Ā is formed by two end points
tg´1 pbq , bu and ta, g paqu. Then

len
`

Ā
˘

“

ż a

g´1pbq

b

pdxq
2

` pg1 pxqq dx2 “

ż a

g´1pbq

b

1 ` g1 pxq
2dx.

Now consider confidence sets of the form of

Ŝ “ tθ : θ1 ě θ̂1 ´ a, θ2 ď θ̂2 ` bu

This implies that we choose a and b such that

P
´

θ̂1 ´ θ10 ď a, θ̂2 ´ θ20 ě ´b
¯

Ñ 1 ´ α

The joint distribution of θ̂´θ0 can be simulated to find a and b for a given α. To determine
a and b, one possibility is to limit to a “ b:

P
´

θ̂1 ´ θ10 ď a, θ̂2 ´ θ20 ě ´a
¯

Ñ 1 ´ α

Another possible is to maximize expected length of Ā:

max
a,b

E
ż θ̂1´a

g´1pθ̂2`bq

b

1 ` g1 pxq
2dx

such that P
´

θ̂1 ´ θ10 ď a, θ̂2 ´ θ20 ě ´a
¯

« 1 ´ α
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This program depends on the true underlying data generating process, which is un-
known. A feasible version can be estimated by bootstrapping: Let E˚, P ˚, θ̂˚ denote
bootstrap versions that can be simulated:

max
a,b

E˚

ż θ̂˚
1 ´a

g´1pθ̂˚
2 `bq

b

1 ` g1 pxq
2dx

such that P ˚
´

θ̂˚
1 ´ θ̂1 ď a, θ̂˚

2 ´ θ̂2 ě ´b
¯

“ 1 ´ α

This is likely to generate a longer Ā given a fixed confidence level.
More generally, we can construct "two dimensional one-sided" confidence sets by invert-

ing two-dimensional inequality tests of the form of

H0 : θ1 ď θ10 and θ2 ě θ20 against H1 : not H0.

For example a test may reject when

θ̂1 ě θ10 ` a or θ̂2 ď θ20 ´ b.

where a and b are obtained from simulating the limiting distribution. This corresponds
then to the confidence set of the form of

Ŝ “ tθ : θ1 ě θ̂1 ´ a and θ2 ď θ̂2 ` bu.

Reverse versions of the conservative tests T2 and T3 take the following form. T2 rejects if
θ̂2 ă g

´

θ̂1

¯

and if

inf
x:x2“gpx1q

n
´

x ´ θ̂
¯1

Ω̂
´

x ´ θ̂
¯

ě χ2
2,1´α.

T3 rejects if θ̂2 ă g
´

θ̂1

¯

and if there exists a point on the ROC that has better TPR and
FPR simultaneously for all points in the confidence set.

Recall that the Bayesian method is able to find the best point on the ROC. It is harder
for the frequentist approach to do so, since typically in a frequentist approach, the level of
confidence is held fixed by convention. In the classical setting, there can be several heuristic
procedures for this purpose, supposing that θ̂ is below the ROC.

In the first approach, we look for pairs pa, bq, such that pa, bq lies on the ROC, that the
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following level of confidence in the superiority of the machine algorithm:

P
´

θ̂1 ě a, θ̂2 ď b
¯

This coverage probability can be estimated by bootstrapping

P ˚
´

θ̂˚
1 ě a, θ̂˚

2 ď b
¯

. (2)

An implementable program is therefore

max
b“gpaq

P ˚
´

θ̂˚
1 ě a, θ̂˚

2 ď b
¯

. (3)

Conventional frequentist confidence set formation centers around θ0. Therefore we consider
two alternative approaches. In the second approach, we want to maximize over pairs pa, bq,
such that

´

θ̂1 ´ a, θ̂2 ` b
¯

lies on the ROC, the level of confidence in the superiority of the
machine algorithm over the human decision maker:

P
´

θ̂1 ´ a ď θ10, θ̂2 ` b ě θ20

¯

“ P
´

θ̂1 ´ θ10 ď a, θ̂2 ´ θ20 ě ´b
¯

This coverage probability can be estimated by bootstrapping

P ˚
´

θ̂˚
1 ´ θ̂1 ď a, θ̂˚

2 ´ θ̂2 ě ´b
¯

for each a P

´

0, θ̂1 ´ g´1
´

θ̂2

¯¯

, b “ g
´

θ̂1 ´ a
¯

´ θ̂2. An implementable program is

max
aPp0,θ̂1´g´1pθ̂2qq

P ˚
´

θ̂˚
1 ´ θ̂1 ď a, θ̂˚

2 ´ θ̂2 ě ´

´

g
´

θ̂1 ´ a
¯

´ θ̂2

¯¯

.

This can also be written as

max
aPpθ̂1,2θ̂1´g´1pθ̂2qq

P ˚
´

θ̂˚
1 ď a, θ̂˚

2 ě 2θ̂2 ´ g
´

2θ̂1 ´ a
¯¯

. (4)

If the maximized value is larger than the given confidence level, then the maximizing pair
of pa, bq on the ROC is chosen. Otherwise do not replace with the machine result.

This procedure can be given the following interpretation:
´

â, b̂
¯

is a consistent estimate
of pa0, b0q, where pa0, b0q is a point on the ROC where the probability of

P
´

θ̂1 ď θ10 ` a, θ̂2 ě θ20 ´ b
¯

is maximized with respect to a and b. Treat ROC and (the unknown) θ0 as fixed, and θ0
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can be on either sides of the ROC.

argmaxaPp0,θ10´g´1pθ20qq,b“gpθ10´aq´θ20P
´

θ̂1 ď θ10 ` a, θ̂2 ě θ20 ´ b
¯

The bootstrap analog provides an estimate
´

â, b̂
¯

of pa0, b0q that are guaranteed to lie on
the ROC.

Alternatively, we might want to minimize over these pairs pa, bq such that
´

θ̂1 ´ a, θ̂2 ` b
¯

lies on the ROC the level of (lack of) confidence in the superiority of the machine algorithm:

P
´

θ̂1 ´ a ě θ10, θ̂2 ` b ď θ20

¯

“ P
´

θ̂1 ´ θ10 ě a, θ̂2 ´ θ20 ď ´b
¯

The true DGP is unknown, but we can estimate the above coverage probability by boot-
strapping

P ˚
´

θ̂˚
1 ´ θ̂1 ě a, θ̂˚

2 ´ θ̂2 ď ´b
¯

for each a P

´

0, θ̂1 ´ g´1
´

θ̂2

¯¯

, b “ g
´

θ̂1 ´ a
¯

´ θ̂2. Thus an implementable program is

min
aPp0,θ̂1´g´1pθ̂2qq

P ˚
´

θ̂˚
1 ´ θ̂1 ě a, θ̂˚

2 ´ θ̂2 ď ´

´

g
´

θ̂1 ´ a
¯

´ θ̂2

¯¯

. (5)

This can also be written as

min
aPpθ̂1,2θ̂1´g´1pθ̂2qq

P ˚
´

θ̂˚
1 ě a, θ̂˚

2 ď 2θ̂2 ´

´

g
´

2θ̂1 ´ a
¯¯¯

. (6)

If the minimized value is smaller than the one minus the given confidence level, then the
minimizing pair of pa, bq on the ROC is chosen. Otherwise do not replace with the machine
result.

This procedure can be given the following interpretation:
´

â, b̂
¯

is a consistent estimate
of pa0, b0q, where pa0, b0q is a point on the ROC where the probability of

P
´

θ̂1 ě θ10 ` a, θ̂2 ď θ20 ´ b
¯

is minimized with respect to a and b. Treat ROC and (the unknown) θ0 as fixed, and θ0

can be on either sides of the ROC.

argminaPp0,θ10´g´1pθ20qq,b“gpθ10´aq´θ20P
´

θ̂1 ě θ10 ` a, θ̂2 ď θ20 ´ b
¯

The bootstrap analog provides an estimate
´

â, b̂
¯

of pa0, b0q that are guaranteed to lie on
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the ROC.

Test inversion and bootstrapping P-value Another approach is to consider the in-
version of test statistics. First we formulate a null hypothesis for the superiority (or lack of
it) of machine over humans, and a corresponding testing procedure. Next we use bootstrap
to compute the P-value of the test, and locate the pair of a, b “ g paq that optimizes the
bootstrapped P-value in favor of a decision of replacing humans with machines. Example
details are given below for four different setups.

Framework 1: For each a, b “ g paq. Let H0 be tθ10 ď a or θ20 ě bu. H1 negates H0. In
other words, H0 states that human is not worse than the machine. We want to minimize
a bootstrapped P-value of a test procedure, since rejection means machine is better, and a
small P-value means the data provides the strongest evidence for rejection.

A natural (although its optimality remains to be investigated) rejection area is

R “ tθ̂1 ě ca and θ̂2 ď cbu.

For each pair of ca, cb, the rejection probability under θ0 “ pa, bq (not proven yet to be the
least favorable null),

P
´

θ̂1 ´ a ě ca ´ a and θ̂2 ´ b ď cb ´ b
¯

can be estimated by bootstrap:

P ˚
´

θ̂˚
1 ´ θ̂1 ě ca ´ a and θ̂˚

2 ´ θ̂2 ď cb ´ b
¯

The bootstrapped P-value is thus

P ˚
´

θ̂˚
1 ´ θ̂1 ě θ̂1 ´ a and θ̂˚

2 ´ θ̂2 ď θ̂2 ´ b
¯

“ P ˚
´

θ̂˚
1 ě 2θ̂1 ´ a and θ̂˚

2 ď 2θ̂2 ´ b
¯

The program to implement is then

min
b“gpaq

P ˚
´

θ̂˚
1 ě 2θ̂1 ´ a and θ̂˚

2 ď 2θ̂2 ´ b
¯

(7)

The machine is chosen if the minimized value is smaller than the given size (e.g. 5%).
Indeed, (7) is exactly the same program as (5) and (6).

Framework 2: For each a, b “ g paq. Let H0 be tθ10 ě a or θ20 ď bu. H1 negates
H0. In other words, H0 states that machine is not worse than human. Rejection means
machine is worse than human, or human is better than machine. Do not replace human with
machine in case of rejection, only replace in case of failing to reject. We want to maximize
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a bootstrapped P-value of a test procedure, since rejection means human is better, and a
large P-value means the data provides the weakest evidence for rejection, or the strongest
evidence for replacing human with machine.

A natural (although its optimality remains to be investigated) rejection area is

R “ tθ̂1 ď ca and θ̂2 ě cbu.

For each pair of ca, cb, the rejection probability under θ0 “ pa, bq (not proven yet to be the
least favorable null),

P
´

θ̂1 ´ a ď ca ´ a and θ̂2 ´ b ě cb ´ b
¯

can be estimated by bootstrap:

P ˚
´

θ̂˚
1 ´ θ̂1 ď ca ´ a and θ̂˚

2 ´ θ̂2 ě cb ´ b
¯

The bootstrapped P-value is thus

P ˚
´

θ̂˚
1 ´ θ̂1 ď θ̂1 ´ a and θ̂˚

2 ´ θ̂2 ě θ̂2 ´ b
¯

“ P ˚
´

θ̂˚
1 ď 2θ̂1 ´ a and θ̂˚

2´ ě 2θ̂2 ´ b
¯

The program to implement is then

max
b“gpaq

P ˚
´

θ̂˚
1 ď 2θ̂1 ´ a and θ̂˚

2 ě 2θ̂2 ´ b
¯

(8)

The machine is chosen if the maximized value is greater than the given desired level.
Indeed, (8) is exactly the same program as (4).

Framework 3: For each a, b “ g paq. Let H0 be tθ10 ď a and θ20 ě bu. H1 negates
H0. In other words, H0 states that human is better than the machine. Rejection means
human is not better than machine. We want to minimize a bootstrapped P-value of a test
procedure, since rejection means human is no better, and a small P-value means the data
provides the strongest evidence for rejection.

A natural (although its optimality remains to be investigated) rejection area is

R “ tθ̂1 ě ca or θ̂2 ď cbu.

For each pair pca, cbq, the rejection probability under θ0 “ pa, bq (the least favorable null),

P
´

θ̂1 ´ a ě ca ´ a or θ̂2 ´ b ď cb ´ b
¯
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can be estimated by bootstrap:

P ˚
´

θ̂˚
1 ´ θ̂1 ě ca ´ a or θ̂˚

2 ´ θ̂2 ď cb ´ b
¯

The bootstrapped P-value is thus

P ˚
´

θ̂˚
1 ´ θ̂1 ě θ̂1 ´ a or θ̂˚

2 ´ θ̂2 ď θ̂2 ´ b
¯

“ P ˚
´

θ̂˚
1 ě 2θ̂1 ´ a or θ̂˚

2 ď 2θ̂2 ´ b
¯

The program to implement is then

min
b“gpaq

P ˚
´

θ̂˚
1 ě 2θ̂1 ´ a or θ̂˚

2 ď 2θ̂2 ´ b
¯

(9)

The machine is chosen if the minimized value is smaller than a given level. However, note
that (9) is identical to

max
b“gpaq

P ˚
´

θ̂˚
1 ď 2θ̂1 ´ a and θ̂˚

2 ě 2θ̂2 ´ b
¯

which is exactly (8).
There is a large literature on testing multivariate equalities based on penalizing objec-

tive functions. Many of these testing procedures can be used to generate a program that
optimizes the P-value along a, b “ g paq to select the optimal point on the machine ROC.

2.4 Replacement of A Subset of Human Decision Makers

The Bayesian approach and frequentist approach translate into related algorithms for re-
placing a subset of the human decision makers. First, a Bayesian approach can compute
(1) and replaces a human decision maker by the machine when (1) is larger than a given
confidence level.

Second, both the Bayesian approach and the frequentist approach can provide confidence
sets (also called credible sets in the Bayesian setting). These confidence set procedures also
translate into algorithms for replacing a subset of the human decision makers. The following
provides more details.

Conventional confidence and credibility levels suggest that we are conservative when
making decisions to replace humans with machines. Specifically, only when there exists a
point on the machine’s ROC curve, which is better than any point in a confidence set of the
human’s FPR/TPR of level α, the machine’s decision is considered to be better than the
human’s decision in an α confidence sense. In other words, only when a sufficiently large
portion of the FPR/TPR joint distribution corresponding to α confidence level is below the
machine’s ROC curve, we will replace the human’s decision by the machine’s.
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Next consider an illustration using a conventional oval-shaped confidence region based
on the asymptotic normal distribution of the estimated human’s FPR/TPR pairs. Note
however that the following discussion applies to any valid confidence region of any shape.

Denote by pHFPR1,HTPRHq the point that corresponds to the highest TPR on the
oval, and pHFPRS ,HTPR2q the point that corresponds to the smallest FPR on the oval.
The point pHFPRS ,HTPRHq corresponds to P in Figure 3. Regarding the position of the
human’s oval shape and machine’s ROC curve, we have three cases.

1. Case 1: The human’s oval area and the point pHFPRS ,HTPRHq are all below the
ROC curve. In this case, the human decision maker is "worse" than the machine, and
hence can be replaced by the machine. This case corresponds to Figure 3. In this case,
one can find two points on the ROC curve pRFPR1,HTPRHq and pHFPRS , RTPR2q

corresponding to points B and A in Figure 3. Any point from A to B corresponds to
a better machine’s decision.

2. Case 2: The entire human’s oval confidence area is below the ROC curve, but the
point pHFPRS ,HTPRHq is above the ROC curve. In this case, although different
points on the machine ROC curve can achieve a better decision than different points
in the confidence region of the human TPR/FPR pair, one cannot find a nonempty
fraction on the machine’s ROC curve that is better than any point in the human’s
confidence set so as to account for the randomness of the estimated human TPR/FPR
pair. In this case, which corresponds to Figure 4, the human decision maker is not
replaced by machine.

3. Case 3: The human’s oval area has a certain area above the machine’s ROC curve,
therefore the human decision maker is not replaced by machine. It could be either be-
cause the human decision maker is sufficiently capable, or because his/her FPR/TPR
pair is not measured precisely enough, for example due to a lack of historical data,
which makes the confidence area (oval) quite large. This case corresponds to Figure
5.

In summary, if the P point pHFPRS ,HTPRHq is below the ROC curve, the human
decision maker is replaced, otherwise he/she is not.

[Figure 4 about here.]

[Figure 5 about here.]

Given a decision to replace a human diagnosis by the machine learning algorithm, the
remaining question of which point on the machine ROC curve to use can be addressed by,
for example, (1) or (3).
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3 Data and Algorithm Description

We illustrate our methodology using an empirical data set in which doctors need to make
diagnosis on high risk pregnancies and birth defects. We first divide our entire sample into
two sub-samples. The first subsample is used to find incapable doctors. Using the second
subsample, we replace those incapable doctors by machine algorithms and use "machines"
to make decisions for observations where the doctor has been replaced. This replacement is
under the assumption that the less capable doctors completely follow the rules of machine
algorithm in making decisions. We find that, the overall performance of the diagnose
procedure is largely improved by combining capable doctors and machine algorithms.

The data of our study comes from the National Free Pre-Pregnancy Checkups (NFPC).
Starting from 2010, this project offers free health checkup for couples planning a pregnancy
and is conducted across 31 provinces in China. The data set contains more than 300 fea-
tures for each observation, including age, demographic characteristics, results from medical
examination and clinical test, disease and medication history, pregnancy history, as well
as lifestyle and environmental information of both wife and husband. The data also has
the true pregnancy outcome, which is denoted as normal (y “ 0) or defect (y “ 1). In
addition, the data set records doctors’ IDs and diagnosis of pregnancy risk. The doctor’s
diagnosis is graded in 4 levels: 0 for normal, 1 for high-risk of female, 2 for high-risk of male
and 3 for high-risk for both female and male. In this paper, we re-group doctor’s diagnosis
into 2 levels, where a grade of 0 corresponds to normal pregnancy and any higher grade
corresponds to a diagnosis of risky pregnancy.

The original dataset includes information about 3,330,304 couples that have pregnancy
outcomes between January 1, 2014 and December 31, 2015. We exclude the samples with
missing information on doctor’s diagnosis and those for which more than 50% of feature
values are missing. The final data set used for analysis includes 1,137,010 couples, who are
diagnosed by 28,716 doctors. Of these observations, 61,184 couples (5.38%) have a defect
birth outcome.

The basic statistical measurement of the quality of a binary classifier is accuracy, which
is the proportion of correct predictions among the total number of cases examined. However,
accuracy itself is not adequate for measuring prediction quality in our cases. As the adverse
birth rate is about 5%, a naive classifier that categories all cases as low-risk would achieve
an accuracy of nearly 95%. This is clearly controversial. The doctors’ overall accuracy is at
73.63%, and 24.04% of couples are diagnosed as high-risk pregnancy. The false positive rate
(the rate of misjudgment of normal birth as high-risk pregnancy) of all doctors is 0.2379.
The true positive rate (TPR) of all doctors is 0.2843. In contrast, the FPR and TPR of the
naive predictor are both zero. In other words, doctors are willing to tolerate a higher FPR
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in order to achieve a higher TPR.
To improve the precision of statistical inference, we focus on doctors who diagnosed

more than 300 patients, and we have a total of 584 such doctors corresponding to 584,181
cases. We first randomly split our sample to two parts. The first part is the "classification"
part, i.e. we use the first part data to train a good machine algorithm, and then classify
"capable" and "incapable" doctors based on the relative performance between machines and
doctors. The second part is the "performance" part, i.e. where we utilize machines to
replace incapable doctors in decision making. In particular, we split each doctor’s cases
into two parts for "classification" and "performance", with a respective ratio of 7:3, using
stratified splitting methods. The random splitting process is done through each class of
data (all cases are grouped into four classes as true positive cases, true negative cases, false
negative cases and false positive cases) with the same ratio 7:3. Then data in each class
is merged together for both "classification" and "performance" parts. There are, in total,
408,661 cases in the classification sample and 175,520 cases in the performance sample.

The first objective in the classification exercise is to train a machine algorithm and
evaluate its performance. We further split our classification sample into two parts: The
first part is the training sample used to estimate the parameters in a machine algorithm;
The second part is the validation sample that can be used to evaluate the performance
of machine algorithm and obtain machine’s ROC curve. We split each doctor’s cases in
the classification sample into the two parts for training and validation with a ratio of 4:3,
using the same stratified splitting methods as described above. There are 233,435 cases in
training sample and 175,226 cases in validation sample.

We experimented with several machine learning algorithm, and noted that that decision
trees are widely used in many machine learning applications. However, a single tree method
usually has high variance in spite of its low bias. It can be easily affected by even small
amount of noises in the data, and training it tends to overfit the data. In contrast, random
forest (RF) is a well-known and commonly used ensemble learning algorithm proposed
by Breiman (2001). It overcomes these problems by constructing a collection of decision
trees that are trained using different feature subspaces with bootstrapped samples. The
predictions of each tree are aggregated as output to make predictions. A more detailed
description of the random forest algorithm is provided in Appendix A.4.6

6For the parameters setting, we choose the number of estimators N “ 100, the number of max features
per node M “ 50 and the minimum number of samples required to split is set to 50.
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4 Empirical Results for AI Assisted Doctors

Next we present the empirical results from three different approaches: (1) the heuristic ap-
proach described in section 2.4 combined with random sampling of points on the dominating
segment of the machine ROC; (2) the Bayesian approach of section 2.2; (3) the frequentist
approaches in (3). We have not yet implemented all the theoretical discussions but merely
focus on a subset for illustration.

4.1 Asymptotic Confidence Set with Random ROC Sampling

We first implement section 2.4 combined with random sampling of points on the domi-
nating segment of the machine ROC. For each doctor, we obtain 100 bootstrap samples
from his/hers historical records, and obtain the 2 sigma (95.4%) confidence oval area of
(FPR, TPR) pairs using the bootstrapped covariance matrix of FPR and TPR centered
around the sample estimates. Then we find the highest TPR on the oval i.e. the point
pHFPR1,HTPRHq, and the smallest FPR on the oval, i.e. the point pHFPRS ,HTPR2q.
Next we obtain the point P pHFPRS ,HTPRHq as figure 3 shows, as the representative
point of this doctor. Then we can classify doctors into two groups.

1. Incapable doctors. The doctor’s representative point pHFPRS ,HTPRHq is below
machine’s ROC curve, which corresponds to case 1 in section 2.4. These doctors are
replaced in future decision making.

2. Other doctors. The doctor’s representative point pHFPRS ,HTPRHq is above ma-
chine’s ROC curve, which corresponds to case 2 and case 3 in section 2.4. These
doctors are either more capable than machines or their capability can not be precisely
measured likely due to small amount of data (resulting in a larger size confidence
set area). They hence are not replaced by the machine algorithm in future decision
making.

After we search for incapable doctors applying this algorithm to the "classification" sam-
ple, we find that among the 584 doctors, 372 incapable doctors are replaced by machines
Therefore, we have 372 "machine" doctors (64%) and 212 (36%) human doctors ready for
diagnosing patient cases in the "performance" sample.

4.1.1 Performance Evaluation

We evaluate the overall performance of combining the decisions of capable doctors and
machine algorithm on performance sample by calculating the overall get the FPR and

26

Electronic copy available at: https://ssrn.com/abstract=3508224 Electronic copy available at: https://ssrn.com/abstract=3508224 



Artificial-Intelligence Assisted Decision Making

TPR. For doctors who are not in the incapable group, their decisions are not replaced by
machines, so we use their origin decisions in the evaluation process.

For each of incapable doctors, we need to determine a threshold value c for the machine
algorithm to make classification decisions. Using the point P pHFPRS ,HTPRHq for each of
these doctors, we find two points on machine’s ROC curve, i.e. the point pHFPRS , RTPR1q

and the point pRFPR2,HTPRHq, which correspond to points A and B in figure 3. As in
Lemma 2.1, the fraction of points B to A on machine’s ROC curve offers a set of better deci-
sion rules than pHFPRS ,HTPRHq does, in the sense of achieving higher TPRs and lower
FPRs. Denote by c2 the decision threshold that corresponds to point ApHFPRS , RTPR1q

and by c1 the decision threshold corresponding to point BpRFPR2,HTPRHq on the ma-
chine’s ROC curve. As both TPR and FPR are monotonically decreasing functions of the
threshold, we thus have c1 ă c2. The thresholds interval rc1, c2s can be interpreted as a
"better" range where the machine would outperform the doctor in terms of TPR/FPR com-
parison if the machine’s decision threshold c is chosen along this interval. The threshold
values depend on the identity of each doctor who is to be replaced by the machine algorithm,
and are more accurately denoted as rcdi,1, cdi,2s.

Our first strategy is to visualize the set of TPR/FPR pairs when the threshold for
classification used by the machine algorithm in the machine and capable doctor combination
ranges over the entire interval rcdi,1, cdi,2s. for each doctor. We define this set as the overall
performance curve, i.e. a set of FPR/TPR pairs where machine’s threshold ranges from
cdi,1 to cdi,2 for each incapable doctor. This is numerically implemented using the following
uniformly sampling algorithms (N is the number of points sample on the curve).

1. For each incapable doctor di, set the step of threshold cdi,step “ pcdi,2 ´ cdi,1q{N

2. For j “ 0 to N :

(a) For each incapable doctor di:
The threshold of di is set to cdi “ cdi,1 ` cdi,step ˚ j. Random forest model makes
prediction pppxq on each case x of di in the testing data set, and makes decision
using the specific threshold cdi : pDpxq “ 1ppppxq ą cdiq.

(b) For other doctors, use their origin decisions on the testing data set.

Obtain a single FPR/TPR pair result Tj by combining the decisions of (a) and (b).

3. Collect the uniformly sampled FPR/TPR pairs tTju
N
j“1.

The overall experiment procedure is summarized in Appendix A.5. In this experiment,
we sample N “ 20 points on thresholds interval.
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Figure 6 shows the results of this experiment. The aggregated FPR/TPR pair of all
doctors on testing set is at 0.2065 for FPR and 0.2264 for TPR, which corresponds to the
blue point in figure 6. The ROC curve of random forest model on the testing set is the green
curve in that figure, and the area under curve (AUC) of the model is 0.6834. The yellow
point and cyan interval are results of overall performance by replacing "incapable" doctors
with machine decisions on the testing set. Any point on the cyan interval (including the
yellow point) has lower FPR but higher TPR compared to the blue "all doctor" FPR/TPR
pair, representing better performance than the doctors overall. In particular, the yellow
point represents the case when the threshold of each incapable doctor di is set to cdi,1 as
section 4.1.1 describes, which is one endpoint of interval that has the highest FPR and
highest TPR. The yellow point has 0.1770 of FPR and 0.3201 of TPR. It means that by
replacing "incapable" doctors with machines, we improve the TPR by 41.4%, while at the
same time also reduce by 14.3% the FPR comparing to the case where the diagnoses are all
done by the doctors.

Another endpoint of the cyan interval, i.e. the lower left point on the interval, achieves
0.1352 of FPR and 0.2731 of TPR. If we use the thresholds corresponding to this point as
machine’s thresholds, we would increase by 20.6% in TPR and reduce by 34.5% in FPR
comparing to all doctors diagnosis. Compared to the yellow point, there is less improvement
in the TPR. But this is compensated by a larger reduction in the FPR, meaning that there
is a smaller amount of type I error. Essentially, the cyan interval merely reflects a trade-off
between improving TPR and reducing FPR, but any point along the interval works better
than humans do. Furthermore, this endpoint (the red point on figure) is also the point that
achieves the maximum F1 score among the cyan interval curve, which achieves a F1 score
of 0.144.

[Figure 6 about here.]

4.1.2 Robustness Checks

To check the robustness of our methods on AI assisted decision making, we conduct the
experiments again based on doctors who diagnosed more then 500 patients. Other settings in
the experiment are kept the same. We have 367 such doctors and 495,320 cases totally. For
the "classification" data set, we have 197,978 cases in the training sample and 148,579 cases
in the validation sample. Altogether 346,557 cases are used as historical records for finding
incapable doctors. For the "performance" data set, we have 148,763 cases for evaluating
the performance of the combination of human doctors and "machine" doctors. After the
classification process in section 4, we find 276 incapable doctors among 367 doctors. In
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other words, 75% of the doctors would be replaced by machines and 25% of human doctors
would be retained in the "performance" part.

[Figure 7 about here.]

Figure 7 shows the results of this experiment. Similar to the remarks after figure 6, the
aggregated FPR/TPR pair of all doctors on the testing set (blue point) is 0.1942 for FPR
and 0.2135 for TPR. The AUC of the RF model is 0.6920. The yellow point on the cyan
interval is 0.1682 in FPR and 0.3417 in TPR. This represents an improvement of 60.0%
in TPR for the experiment, and a corresponding reduction by 13.4% of FPR. The lower
left point of the cyan interval achieves 0.1203 of FPR and 0.2766 of TPR. If we use the
thresholds corresponding to this point as the machine’s decision rule, we would obtain an
improvement of 29.6% in TPR and a reduction by 38.1% of FPR comparing to all doctors
diagnoses. The point that achieves the maximum F1 score among the cyan curve is the red
point in figure 7, which is close to the lower left point and registers a F1 score of 0.154. The
overall performance of machine with capable doctors does not differ substantially from is
not much the experiments conducted in section 4.1.1, providing evidence for the robustness
of our methods.

The above experiments demonstrate the potential capability and robustness of our al-
gorithms at assisting doctors with the diagnosis of risky pregnancy. Using machines to
replace incapable doctors, the overall performance of the diagnosis is drastically improved.
We also provides an interval for users to choose from to balance the trade-off between im-
proving TPR and reducing FPR. At any point on the interval, the overall performance of
the combined diagnosis is better than that by the humans.

4.2 Results of Bayesian Approach

For each doctor Di and the doctor’s historical data tpXi, pYi, Yiqu, where pYi is doctor’s
diagnosis and Yi is the ground-truth label for case Xi, we can use three parameters to
specify the doctor’s model, i.e. p1 “ EY pY , p2 “ Ep1 ´ Y qpY , p3 “ EY p1 ´ pY q (we also have
p4 “ Ep1 ´ Y qp1 ´ pY q. However p1 ` p2 ` p3 ` p4 “ 1 so p4 is not a free parameter).

Notice we have

FPR “
Ep1 ´ Y qpY

Ep1 ´ Y q
, TPR “

EY pY

EY
,

we also denote θ1 “ FPR, θ2 “ TPR, and we can get the formula θ “ hppq shows the
relation between θ and p, i.e.

θ1 “
p2

p2 ` p4
, θ2 “

p1
p1 ` p3

.
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We first set a prior πppq, which is a symmetry Dirichlet distribution with four parameters
α1, α2, α3, α4, and we have α1 “ α2 “ α3 “ α4 “ α “ 0.01. So πppq is a uniform prior on
p1, p2, p3, p4.

We group the doctor’s historical cases into four class according to the values of pY and
Y of each case, and get the frequency of each class, i.e.

1. npp1 equals to the number of cases that Y “ 1, pY “ 1;

2. npp2 equals to the number of cases that Y “ 0, pY “ 1;

3. npp3 equals to the number of cases that Y “ 1, pY “ 0;

4. npp4 equals to the number of cases that Y “ 0, pY “ 0.

Since the data follows a multinomial distribution with four categories, given p, the data
likelihood is

LpY |pq “

ˆ

n

npp1

˙

pnpp1
1

ˆ

n ´ npp1
npp2

˙

pnpp2
2

ˆ

n ´ npp1 ´ npp2
npp3

˙

pnpp3
3 pnpp4

4 .

We combine the prior distribution and the data likelihood to analytically compute the
posterior distribution, which is also a Dirichlet distribution with parameters ppα1, pα2, pα3, pα4q,
where

pαi “ α ` nppi “ 0.01 ` nppi,

for i “ 1, 2, 3, 4.
The posterior distribution of θ “ pθ1, θ2q can be simulated. First, draw S samples

of tpi “ pp1i, p2i, p3i, p4iquSi“1 from the posterior Dirichlet distribution with parameters
ppα1, pα2, pα3, pα4q. After that, we can get the tθi “ pθ1i, θ2iquSi“1 with the simulated S samples
of p using the formula θ “ hppq described above.

The machine’s ROC curve can be represented as the formula θ2 “ gpθ1q. For any
point P pa, gpaqq on machine’s ROC Curve, we can obtain the portion that P dominate
θr P tθiu

S
i“1, which is defined as

q paq “
1

S

S
ÿ

i“1

1pθ1i ě a, θ2i ď gpaqq,

and we can find the maximum of q on the ROC curve, i.e.

qmax “ max
aPp0,1q

«

1

S

S
ÿ

i“1

1pθ1i ě a, θ2i ď gpaqq

ff

,
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using numerical methods. If qmax ě 0.95, we mark the doctor D as an incapable doctor, who
would be replaced by machines in future decisions, and the threshold c that corresponds to
the point which maximizes q on ROC is used as decision threshold for machine algorithms.
Otherwise, the doctor would not be replaced by machines.

For example, figure 8 shows the case where a doctor would be replaced by machine. The
maximum coverage rate q achieves 0.970 at the black point on ROC. However, in figure 9,
the maximum coverage rate only achieves 0.279, so there is not sufficient evidence to replace
the doctor’s decisions with machine’s.

[Figure 8 about here.]

[Figure 9 about here.]

Figure 10 (a) shows the result of experiments on doctors who diagnosed more than 300
cases. A total of 255 out of 584 doctors are classified as incapable doctors. So we have 329
(56%) human doctors and 255 (44%) "machine" doctors. Overall, human doctors achieve
0.2065 of FPR and 0.2264 of TPR, which corresponds to the blue point on the figure. By
replacing incapable doctors’ decisions with machine decisions, the combined decision results
in 0.1871 of FPR and 0.3255 of TPR, i.e. the yellow point on the figure, which indicates an
increase of 43.8% in TPR and a reduction of 9.39% in FPR.

Figure 10 (b) shows the result of experimenting with on doctors who diagnosed more
than 500 cases. Among all 367 doctors, 203 of them are classified as incapable doctors, who
account for 55% of the total. The overall performance of human doctors is at 0.1942 of FPR
and 0.2135 of TPR. By replacing the decisions made by incapable doctors with machine
decisions, the overall FPR is at 0.1792 and TPR is at 0.3332. So we obtain an improvement
of 56.1% on TPR and a reduction of 7.68% on FPR.

[Figure 10 about here.]

4.3 Results of Frequentist Approach

4.3.1 First Approach

This subsection implements (3). For each doctor D, we obtain S bootstrapped samples of
the doctor’s diagnosis cases, and get the θ values for the S samples i.e. tθi “ pθ1i, θ2iquSi“1.
Given machine’s ROC curve θ2 “ gpθ1q, for an arbitrary point pa, gpaqq on ROC, we can
use (2) to estimate the probability that the point pa, gpaqq dominates doctor’s θ, i.e,

P pθ1 ě a, θ2 ď gpaqq.
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Based on this, we want to obtain the maximum of probability that

max
aPp0,1q

P pθ1 ě a, θ2 ď gpaqq

on machine’s ROC curve. If the maximized value is larger than the given confidence level
(95%), the doctor D is classified as incapable doctor, and the threshold value corresponded
to the maximized pair of pa, gpaqq on machine’s ROC is chosen as decision threshold. Oth-
erwise we would not replace doctor’s decisions with machine results.

Figure 11 (a) shows the result of this experiment under frequentist approach. Among
all 584 doctors who diagnosed more than 300 cases, 261 of them are marked as incapable
doctors. So we have 323 (55%) human doctors and 261 (45%) "machine" doctors totally.
Overall, human doctors achieve 0.2065 of FPR and 0.2264 of TPR, as the blue point shown
on the figure. By replacing incapable doctors’ decisions with machine decisions, the com-
bined decision making results in 0.1885 of FPR and 0.3226 of TPR, i.e. the yellow point on
the figure, which indicates an increase of 42.5% in TPR and a reduction of 8.73% in FPR.

Figure 11 (b) shows the result of experiments on doctors who diagnosed more than
500 cases. Among all 367 doctors, 203 of them are classified as incapable doctors, who
account for 55% of the total. The overall performance of human doctors is at 0.1942 of
FPR and 0.2135 of TPR. By replacing the decisions made from incapable doctors with
machine decisions, the overall FPR is at 0.1732 and TPR is at 0.3252. So we obtain an
improvement of 52.3% on TPR and a reduction of 10.8% on FPR.

[Figure 11 about here.]

4.3.2 Two Alternative Approaches

This subsection implements two alternative frequentist approaches, i.e. (4) and (5). Firstly,
we would present the results of approach (4). For each doctor D, given machine’s ROC
θ2 “ gpθ1q and D’s FPR/TPR pair

´

θ̂1, θ̂2

¯

, we would find a pair pa, bq that maximize the
estimated probability of machine algorithm outperforming human doctor D, i.e.

max
aPp0,θ̂1´g´1pθ̂2qq,b“gpθ̂1´aq´θ̂2

P ˚
´

θ̂˚
1 ´ θ̂1 ď a, θ̂˚

2 ´ θ̂2 ě ´b
¯

,

where the constrains guarantee the pair
´

θ̂1 ´ a, θ̂2 ` b
¯

lies on machine ROC, and
´

θ̂˚
1 , θ̂

˚
2

¯

is obtained from the bootstrapped samples of doctor D1s diagnosis cases. If the maximized
value is greater than the given confidence level, the doctor D would be classified as inca-
pable doctor, and the threshold value of point

´

θ̂1 ´ a, θ̂2 ` b
¯

on machine ROC with pa, bq

32

Electronic copy available at: https://ssrn.com/abstract=3508224 Electronic copy available at: https://ssrn.com/abstract=3508224 



Artificial-Intelligence Assisted Decision Making

corresponding to the maximized P ˚ is chosen as decision threshold. Otherwise we would
not replace doctor’s decisions with machine results.

Figure 12 shows the results of experiments under this frequentist approach. We choose
95% as confidence level, and bootstrapped 1000 times for each doctor. Figure 12 (a) shows
the result of experiments on doctors who diagnosed more then 300 cases. Of all 584 doctors,
273 of them are labeled as incapable doctors. So, we would have 311 (53%) human doctors
and 273 (47%) "machine" doctors take part in the evaluation of testing data set. The human
doctors achieve 0.2065 of FPR and 0.2264 of TPR in the whole testing data set, as the blue
pair shows on the graph. By replacing incapable doctors’ decisions with machine’s decision,
the overall FPR is at 0.1939 (a reduction of 6.12%) and the TPR is at 0.3410 (an increase
of 50.6%), showed by the yellow pair.

Figure 12 (b) shows the result of experiments on doctors who diagnosed more then
500 cases. After classification, 211 of 367 doctors are marked as incapable doctors, so the
"machine" doctors account for 57%. The blue pair in the graph is the FPR/TPR pair
of overall doctors, which is at 0.1942/0.2135. After the replacement of incapable doctors’
decisions, we would get the FPR at 0.1822 and the TPR at 0.3478, as the yellow pair shows.
So, in this case, we get an improvement of 62.9% at TPR and a reduction of 6.18% at FPR.

[Figure 12 about here.]

The last is implementation of (5). Similar to approach (4), for each doctor D, given
machine’s ROC θ2 “ gpθ1q and D’s FPR/TPR pair

´

θ̂1, θ̂2

¯

, we would find a pair pa, bq

that minimize the estimated probability of human doctor D superior to machine algorithm,
i.e.

max
aPp0,θ̂1´g´1pθ̂2qq,b“gpθ̂1´aq´θ̂2

P ˚
´

θ̂˚
1 ´ θ̂1 ě a, θ̂˚

2 ´ θ̂2 ď ´b
¯

,

where the constrains guarantee
´

θ̂1 ´ a, θ̂2 ` b
¯

lies on machine ROC, and
´

θ̂˚
1 , θ̂

˚
2

¯

is
calculated from the bootstrapped samples of doctor D1s diagnosis cases. If the minimized
value is less than one minus the given confidence level, the doctor D would be classified as
incapable doctor, and the threshold value of point

´

θ̂1 ´ a, θ̂2 ` b
¯

on machine ROC with
pa, bq corresponding to the minimized P ˚ is chosen as decision threshold. Otherwise doctor
D’s decisions would not be replaced.

Figure 13 shows the results of experiments under this frequentist approach. We choose
95% as confidence level as before, so one minus the confidence level would be 5%. And the
number of bootstrap time is also 1000 for each doctor. Figure 13 (a) shows the result of
experiments on doctors who diagnosed more then 300 cases. Among all 584 doctors, 522 of
them are labeled as incapable doctors. So, we would have only 62 (11%) human doctors and
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522 (89%) "machine" doctors. Overall, human doctors achieve 0.2065 of FPR and 0.2264
of TPR in testing data set, as the blue pair shows on the graph. By replacing incapable
doctors’ decisions with machine’s decision, the overall FPR is at 0.1963 (a reduction of
4.96%) and the TPR is at 0.3813 (an increase of 68.4%), showed by the yellow pair.

Figure 13 (b) shows the result of experiments on doctors who diagnosed more then
500 cases. After classification, 350 of 367 doctors are marked as incapable doctors, so the
"machine" doctors account for 95%. The blue pair in the graph is the FPR/TPR pair
of overall doctors, which is at 0.1942/0.2135. After the replacement of incapable doctors’
decisions, we would get the FPR at 0.1851 and the TPR at 0.3813, as the yellow pair shows.
So, in this case, we get an improvement of 78.6% at TPR and a reduction of 4.67% at FPR.

[Figure 13 about here.]

It seems that approach (5) would label more incapable doctors than (4), and this may
be due to non-equivalent selection of confidence level. In implementation of (4), the con-
fidence level is set to 95%. In implementation of (5), we used p1 ´ 95%q as threshold for
judging incapable doctors. This implies a condition that the probability of machine defi-
nitely outperforming human decision maker and the probability of human definitely superior
to machine are add up to 1. However, this may not be true in the estimation of doctor
and machine in our experiments, and there’re cases that we cannot judge definitely whether
human or machine performs better, for example, when machine’s FPR and TPR are both
lower then human’s FPR and TPR.

4.4 Geographic Characteristics of Replaced Doctors

The approaches mentioned above provide methods for filtering incapable doctors that have
poorer diagnostic capability than machines. We create a dummy variable "incapable" that
is set to 1 when a doctor is replaced by machine, and 0 otherwise. The next step is to check
whether locations of doctors have significant influence on this replacement. Particularly, we
choose two factors: the first factor is the provincial Gross Domestic Product (GDP) from
China City Statistical Yearbook of year 2014, which coincides with the starting year of our
data. The other factor is a dummy variable that is set to 1 when the doctor is in a township
(lower level) clinic, and 0 when he/she is in an urban (higher level) clinic/hospital.

We conduct a regression analysis of the dummy variable "incapable" on these two fac-
tors for all doctors who diagnosed more than 300 cases, excluding the ones that don’t have
records on the township factor. Table 1 shows the results of linear and logistic regression
using both Frequentist and Bayesian approaches. Doctors from township clinic have signif-
icantly (10%) higher probability to be replaced by machines relative to those from urban
clinics. Particularly, with the Bayesian approach, 50.5% of doctors from township clinic are
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replaced by machine, while 40.2% of urban clinic doctors are replaced. Using Frequentist
method, we find 50.2% and 39.3% of township and urban clinic doctors are replaced by
machines, respectively. The provincial GDP has a negative coefficient in the regression,
which informs doctors from low GDP province tend to be replaced; however, the statis-
tical insignificance informs a less strength of GDP in detecting the capability of doctors
compared to the township dummy.

Overall, these results inform that artificial-intelligence technology tends to benefit rural
area more than developed cities in decision making. To the best of our knowledge, our
result is the first to empirically show that the decision making of artificial intelligence is
more beneficial to poor areas relatively to developed areas.7 This is easy to understand:
poor areas normally have more less-educated and lower-skilled people who are lack of suffi-
cient knowledge in making a good decision. This has an important implication for poverty
reduction with high-tech.

[Table 1 about here.]

5 Conclusion

In this paper, we propose our principle of how artificial intelligence can assisted human in
decision making. First, by assuming that preference of individual decision maker is constant,
we can make comparison on the ability of decision making between human and machine, and
identify the less capable decision makers. Second, given that the incapable human decision
maker will completely follow the decision of machines (or replaced by machines), we propose
decision rules based on the machine’s ROC, including randomization and maximizing the
level of statistical confidence.

By replacing these less capable decision makers with machines, we would obtain im-
proved performance in the quality of future decisions. Experiments from a data set of
the Pre-Pregnancy Checkups shows that by replacing the less capable doctors, the overall
performance of risky pregnancy detection achieves much improvement. Furthermore, less
capable doctors are more likely to come from rural clinics than urban ones. This indicates
that artificial intelligence is more beneficial in under-developed areas.

Our current paper addresses the issue of sampling uncertainty in a simple setting with
an individual doctor. There are many open questions and directions of extensions. For
example, empirically we are likely to be testing multiple doctors. There is a large literature

7In the non-decision-making area, there’re are related literature. For example, Reis et al. (2004) developed
a fuzzy-logic based system to predict the need of neonatal resuscitation for areas with poor medical resources,
Onu et al. (2017) proposed a cheap and easy-to-use machine-learning based system for detecting asphyxia.
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on multiple hypothesis testing that includes the use of Bonferroni corrections, stepwise pro-
cedures, and other procedures that take the joint distribution across doctors into account,
in order to control family-wise error rates. These are issues for future research.

A Appendix

A.1 Incentive-feature Dependence

In this paper, we assume away the incentive-feature dependence (as shown in Assumption 1),
so that we are able to make comparison between machines and individual decision makers.
However, each individual decision maker may not have a constant preference, and may
change her cutoff threshold c based on observed features. In this case, each decision maker
does not need to be represented by a single point on the ROC curve. For example, Chandra
and Staiger (2011) find that hospitals treat similar patients differently due to consideration
of commercial benefits. Therefore c depends on both hospitals and the location of patients.

If this type of incentive heterogeneity exists across the sample of decision makers, or
within each individual, the aggregate TPR/FPR pair can lie below the optimal ROC curve,
or even below the 45 degree line, even if humans have better information processing capac-
ities than machines. Lemma A.1 provides a formal proof.

Lemma A.1. In the absence of information heterogeneity, if the cutoff threshold c varies
among decision makers or within a single decision maker (incentive heterogeneity), the
aggregate PTPR/PFPR pair of decision makers is below the optimal ROC curve.

Proof. To prove this, we write the pair as

PFPR “
1

1 ´ p

ż

λ pxq p1 ´ p pxqq f pxq dx,

PTPR “
1

p

ż

λ pxq p pxq f pxq dx,

where λ pxq “
ş

1 pp pxq ą h px, vqq f pvq dv, note that the cutoff variable h px, vq depends
on x and a random variable v. We assume that the decision rule Ŷ “ 1 pp pxq ą h px, vqq has
some classification ability, i.e. 1 pp pxq ą h px, vqq ı 0 and 1 pp pxq ą h px, vqq ı 1, therefore,
0 ă λ pxq ă 1. Then for a c˚ satisfying

α pc˚q “

ż

1 pp pxq ą c˚q p1 ´ p pxqq f pxqdx “ PFPR “

ż

λ pxq p1 ´ p pxqq f pxq dx (10)
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on the optimal ROC curve, given the FPR α pc˚q, we can find the TPR β pc˚q:

β pc˚q “

ż

1 pp pxq ą c˚q p pxq f pxq dx. (11)

Since α pc˚q and β pc˚q are on the optimal ROC curve, by the Neyman-Pearson Lemma,
there must be some positive η1 and η2 such that 1 pp pxq ą c˚q (but not λ pxq) solves

argmax
ϕp¨q

η1

ż

ϕ pxq p pxq f pxqdx ´ η2

ż

ϕ pxq p1 ´ p pxqq f pxq dx. (12)

Hence η1β pc˚q ´ η2α pc˚q ą η1PTPR ´ η2PFPR, and thus β pc˚q ą PTPR.

A.2 Proof of Lemma 2.1

As shown in the population model of Feng et al. (2019), the Neyman Pearson lemma shows
that a decision rule of D “ 1pppxq ą cq is the same as the maximization of a utility function
of linear combination of TPR and FPR:

ϕTPR ´ ηFPR

where ϕ “ pC1A ą 0 and η “ p1 ´ pqC0R ą 0, and p is the probability of the positive
outcomes. C1A is the cost of wrong decision when the real outcome is positive and C0R is
the cost of wrong decision when the real outcome is negative. C1A and C0R are assumed to
be constant for individual decision makers, but may not be known by researchers.

If a human’s FPR/TPR pair pHFPR0,HTPR0q is below the ROC curve, we then can
find two points on the ROC curve pHFPR0,RTPR0q and pRFPR0,HTPR0q, which corre-
spond to A and B in Figure 2. Any point pRFPR,RTPRq between pRFPR0,HTPR0q and
pHFPR0,RTPR0q on the machine’s ROC curve has a larger TPR than HTPR0 and a smaller
FPR than HFPR0, i.e. RFPR ă HFPR0 and RTPR ą HTPR0. We hence have:

ϕRTPR ´ ηRFPR ą ϕHTPR0 ´ ηHFPR0

Therefore, any point between pRFPR0,HTPR0q and pHFPR0,RTPR0q on the ROC curve
has a larger utility and hence corresponds to a better decision than the human.

When the true propensity score function p pxq has a continuous distribution supported
on p0, 1q in the population model of Feng et al. (2019), the limit ROC curve is continuous
and concave, and closely approximates the finite sample ROC when the sample size is
sufficiently large. However, with any given sample size, xi is discretely distributed, and the
ROC corresponds to a maximum of n discrete points instead of a connected curve, as shown
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in figure

[Figure 14 about here.]

which plots the pair of, with pi “ p pxiq

TPR “
1

p̂

n
ÿ

i“1

yi1 ppi ě cq , FPR “
1

1 ´ p̂

n
ÿ

i“1

p1 ´ Yiq1 ppi ě cq .

There are different ways to connect these points into a curve. Examples are

[Figure 15 about here.]

and

[Figure 16 about here.]

Suppose the machine algorithm discovers the true population propensity score p pxq, and
human decisions are based on the same set of features x, in any finite sample (for example in
the testing or validation sample) there is no guarantee that the human aggregate TPR/FPR
pair will lie below the finite sample machine ROC that are formed based on a finite number
of points.

In one special case we can provide a definitive finite sample comparison. Suppose
the features X are discretely distributed with a finite number of support points: x P

pxj , j “ 1, . . . , Jq. The sample is used both for machine estimation and ROC computa-
tion. Then let nj “

řn
i“1 1 pXi “ xjq, there is

pj “ p̂ pxjq “
1

nj

nj
ÿ

i“1

yi

The machine ROC is then based on the pairs:

mTPR pcq “ 1
p̂

řn
i“1 yi1 ppi ě cq “ 1

p̂

řJ
j“1 njpj1 ppj ě cq

mFPR pcq “ 1
1´p̂

řn
i“1 p1 ´ yiq1 ppi ě cq “ 1

1´p̂

řJ
j“1 p1 ´ pjqnj1 ppj ě cq .

These pairs only change when c crosses one of the pj ’s. The following figure depicts such
(points of) ROC

[Figure 17 about here.]

Suppose a human decision rule is ŷi “ 1 pq pxiq ě chq ” 1 pqi ě chq for some ch, generating
a pair of

hTPR “ 1
p̂

řn
i“1 yi1 pqi ě chq “ 1

p̂

řJ
j“1 njpj1 pqj ě chq

hFPR “ 1
1´p̂

řn
i“1 p1 ´ yiq1 pqi ě chq “ 1

1´p̂

řJ
j“1 p1 ´ pjqnj1 pqj ě chq .
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Then by a discrete version of the Neyman-Pearson argument, the pair (hFPR, hTPR)
must lie in the shaped area of Figure 17. To see this, suppose the contrary. Then for some
cm, there are both

řJ
j“1 njpj1 pqj ě chq ě

řJ
j“1 njpj1 ppj ě cmq

řJ
j“1 p1 ´ pjqnj1 pqj ě chq ď

řJ
j“1 p1 ´ pjqnj1 ppj ě cmq .

Or (with at least one inequality being strict)

řJ
j“1 njpj1 pqj ě chq ě

řJ
j“1 njpj1 ppj ě cmq

řJ
j“1 p1 ´ pjqnj1 pqj ă chq ě

řJ
j“1 p1 ´ pjqnj1 ppj ă cmq .

Taking a linear combination of the two sides using coefficients 1 ´ cm and cm, there is

řJ
j“1 rp1 ´ cmqnjpj1 pqj ě chq ` cm p1 ´ pjqnj1 pqj ă chqs

ą
řJ

j“1 rp1 ´ cmqnjpj1 ppj ě cmq ` cm p1 ´ pjqnj1 ppj ă cmqs

This is clearly a contradiction since the right hand side achieves

max
δj ,j“1,...,J

J
ÿ

j“1

rp1 ´ cmqnjpjδj ` cm p1 ´ pjqnj p1 ´ δjqs .

Next we provide a concavity result, similar to the continuous limit population case, that
are depicted in figure 18,

[Figure 18 about here.]

where adjacent machine TPR/FPR pairs are connected by a straight line to form a ROC
“curve”. The slopes of these connecting lines can be shown to be monotonically decreasing.
First the slope of the line connecting the pairs between pTk`1, Fk`1q and pTk, Fkq can be
written as, up to a constant, supposing pk is ranked in decreasing order

sk “

řJ
j“1 njpj1 ppj ě pkq ´

řJ
j“1 njpj1 ppj ě pk`1q

řJ
j“1 nj p1 ´ pjq1 ppj ě pkq ´

řJ
j“1 nj p1 ´ pjq1 ppj ě pk`1q

“
pk

1 ´ pk
.

This is an increasing function of pk, meaning that the slope decreases from the p0, 0q corner,
where cutoff cm “ pk is close to 1, to the p1, 1q corner, where the cutoff cm “ pk decreases
to close to 0. Hence the ROC curve represented by interpolating the J ` 1 points with
straight lines is a concave curve.

In particular, the line segment between any given two points pTk`1, Fk`1q and pTk, Fkq
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represents the FPR/TPR pairs of a collection of randomized decision rules:

p1 ´ λq1 ppj ě pk`1q ` λ1 ppj ě pkq ,

where λ ranges from p0, 1q. This corresponds to a randomized classification rule utilizing
an independent uniform random variable Ui „ U p0, 1q, such that

ŷi “

"

1 p pxiq ě pk and Ui ď λ

0 p pxiq ă pk and Ui ă λ

1 p pxiq ě pk`1 and Ui ě λ

0 p pxiq ě pk`1 and Ui ă λ

In fact, any concave ROC curve can be dominated by a concavified ROC using linear
extrapolation that corresponds to randomized decision rules. Consider two points pF1, T1q

and pF2, T2q on the FPR/TPR plane that correspond to classification rules of ŷ “ 1 px P R1q

and ŷ “ 1 px P R2q. Let the new randomized decision rule be

ŷi “ 1 pUi ě λq1 pXi P R1q ` 1 pUi ă λq1 pXi P R2q .

The FPR/TPR pair corresponding to this randomized classification rule is then easily
computed to be a linear combination

pp1 ´ λqF1 ` λF2, p1 ´ λqT1 ` λT2q .

When λ ranges from p0, 1q, this traces out the line segment between pF1, T1q and pF2, T2q.

A.3 Proof of Asymptotic Joint Normal Distribution of FPR/TPR Pair

Before we show the joint normal distribution of FPR/TPR pair, we first show the asymp-
totic distribution of TPR and FPR of human decision makers. We then present the joint
distribution.

A.3.1 Asymptotic Distribution of TPR

Denote p0 as population probability of positive events, and p1 and p2 as TPR and FPR in
the population. For briefness, we write TPR as pA, i.e.,

pA “

řn
i“1 Yi

pYi
řn

i“1 Yi
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and let

A “
EYi pYi
EYi

“ p1.

We want to obtain the limiting distribution of pA, of the form of

?
np pA ´ Aq

d
Ñ Np0, ζ2q

where
?
np pA ´ Aq “

?
n

npp

n
ÿ

i“1

pYi pYi ´ ppAq.

By weak law of large number,

pp “
1

n

n
ÿ

i“1

Yi
P

Ñ p0.

So, by Slutsky’s theorem, it suffices to show that for a constant Ω

?
n

n

n
ÿ

i“1

pYi pYi ´ ppAq
d

Ñ Np0,Ωq,

then
?
np pA ´ Aq

d
Ñ Np0,

Ω

p20
q.

Since
pp “

1

n

n
ÿ

i“1

Yi

and
pp “

1

n

n
ÿ

i“1

pp,

?
n

n

n
ÿ

i“1

pYi pYi ´ ppAq “

?
n

n

n
ÿ

i“1

pYi pYi ´ AYiq.

We write
ηpYi, pYiq “ Yi pYi ´ AYi,

?
n

n

n
ÿ

i“1

pYi pYi ´ ppAq “

?
n

n

n
ÿ

i“1

ηpYi, pYiq.

By the De Moivre-Laplace central limit theorem,

1
?
n

n
ÿ

i“1

ηpYi, pYiq
d

Ñ Np0,Ωq,
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where
Ω “ V arpηpYi, pYiqq,

where

Eη “ ´Ap0p1 ´ p1q ` p1 ´ Aqp0p1

“ ´Ap0 ` p0p1

Eη2 “ A2p0p1 ´ p1q ` p1 ´ Aq2p0p1

“ A2p0 ´ 2Ap0p1 ` p0p1

so

V arpηpYi, pYiqq “ Eη2 ´ pEηq2

“ p0p1 ´ p0p
2
1

then we get
?
np pA ´ Aq

d
Ñ Np0,

p1 ´ p21
p0

q

A.3.2 Asymptotic Normality of FPR

For briefness, we write FPR as pB, i.e.,

pB “

řn
i“1p1 ´ YiqpYi

řn
i“1p1 ´ Yiq

and let

B “
Ep1 ´ YiqpYi
Ep1 ´ Yiq

“ p2.

Follow the definitions above, we have Q “ 1 ´ Y , then Q „ Bp1, 1 ´ p0q, and

pB “

řn
i“1Qi

pYi
řn

i“1Qi
,

B “
EQi

pYi
EQi

“ p2.

Notice that pB and B have the same form as pA and A in section above, so we could
obtain the limiting distribution of pB in a similar way, i.e.,
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?
np pB ´ Bq

d
Ñ Np0,

p2 ´ p22
1 ´ p0

q

A.3.3 Asymptotic Joint Normality of FPR/TPR Pair

We have proved the asymptotic normality of both FPR and TPR in sections above, and we
want to obtain the asymptotic normality of pFPR, TPRq.

Let p0 “ EYi, p1 “ EYiŶi
EYi

, p2 “
Ep1´YiqŶi

Ep1´Yiq
. We want to obtain the asymptotic normality

of pTPR,FPRq. For briefness, we write this pair as Â and let A “ pp1, p2q. We want to
obtain the limiting distribution of Â, of the form of

?
n

´

Â ´ A
¯

d
ÝÑ N p0,Σq .

We have p̂ “ 1
n

řn
i“1 Yi

P
ÝÑ p0 and

?
n

´

Â ´ A
¯

“
?
n

˜

řn
i“1 YiŶi

řn
i“1 Yi

´ p1,

řn
i“1 p1 ´ Yiq Ŷi

řn
i“1 p1 ´ Yiq

´ p2

¸

“
?
n

¨

˝

řn
i“1

”

YiŶi ´ Yip1

ı

np̂
,

řn
i“1

”

p1 ´ Yiq
´

Ŷi ´ p2

¯ı

n p1 ´ p̂q

˛

‚.

Since pp̂, 1 ´ p̂q
P

ÝÑ pp0, 1 ´ p0q, by the multivariate Slutsky’s theorem, it suffices to show
that for a matrix Ω

?
n

n

˜

n
ÿ

i“1

Yi

´

Ŷi ´ p1

¯

,
n

ÿ

i“1

p1 ´ Yiq
´

Ŷi ´ p2

¯

¸

d
ÝÑ N p0,Ωq .

The left side is
?
n
n

řn
i“1

´

Yi

´

Ŷi ´ p1

¯

, p1 ´ Yiq
´

Ŷi ´ p2

¯¯

. Write the term in summation
as pηi, ξiq. By the multivariate Central Limit Theorem

1
?
n

n
ÿ

i“1

pηi, ξiq
P

ÝÑ N p0,Σq ,

where Σ “ Cov ppηi, ξiqq. We can calculate that

Σ “

#

p0p1 ´ p0p
2
1 0

0 p0p2 ´ p0p
2
2

+

,
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because Yi p1 ´ Yiq
´

Ŷi ´ p1

¯ ´

Ŷi ´ p2

¯

” 0. So we get

?
n

´

Â ´ A
¯

d
ÝÑ N

˜

0,

#

p1´p21
p0

0

0
p2´p22
p0

+¸

. (13)

This explain why the two-dimensional confidence interval is a ellipse (not a rotated ellipse).

A.4 Machine’s Algorithm: The Random Forest

Consider a dataset D “ tpx1, y1q, px2, y2q, ..., pxk, ykqu, where each input vector x P Rd has
d features. A random forest algorithm with N estimators and M max features per node,
i.e. for each node in a tree, no more then M features will be considered to obtain the best
split, works as follows:

1. For i “ 1 to N :

(a) Draw a bootstrap sample Di from the training data D; i.e. Di has the same
sample size as D but is drawn with replacement.

(b) Grow an unpruned tree Ti using Di by repeating the following steps for each
node of the tree, until the leaves are pure or the minimum number of samples
required to split is reached:

i. Randomly choose M features from d features of input vector.
ii. Pick the best one feature to split among M features using Gini impurity

criterion.
iii. Split the node into two sub-nodes using the best feature.

2. Obtain the random forest output tTiu
N
i“1.

Given a new input x, the random forest makes a prediction by aggregating the results
of N trees:

• Regression: pfpxq “ 1
N

řN
i“1 Tipxq.

• Classification: pCpxq “ majority vote of tTipxquNi“1. The probability of class ppp pCpxqq

is computed as the mean of class probability of each tree in the forest. The class
probability of a single tree is the fraction of samples of the same class in a leaf of
which x falls into.
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A.5 Overview of Algorithm

The overview algorithm of approach based on asymptotic confidence set with random ROC
sampling (Section 4.1) is as follows:

1. Training RF Model and Computing the Machine’s ROC Curve. Split
the training subset of observations for each doctor into two parts: the first part is
aggregated and used to grow a random forest model as described in section A.4; the
features and label from the second part are used as inputs to make prediction by the
RF model, and to tabulate the machine’s ROC curve.

2. Classifying Capable and Incapable Doctors. Classify each doctor into the ca-
pable or incapable group using the methods in section 2.4 with his/her training set
as historical records.

3. Generating Thresholds Interval of Incapable Doctors. For each doctor di in
incapable group, obtain the threshold interval endpoints cdi,1 and cdi,2. As described
in section 2.4, we first obtain the point P pxp, ypq that represents the lowest FPR xp

and highest TPR yp of doctor’s confidence set. Denote the decision corresponding
to pxp, TPR|xpq by cdi,2, and the decision threshold corresponding to pFPR|yp , ypq

on machine’s ROC curve by cdi,1. The machine’s performance with any threshold
cdi P rcdi,1, cdi,2s would be better than this doctor’s.

4. Making Prediction and Decision. Make prediction and decision on the testing
set. For capable doctors, their decisions are not replaced by machines, and are thus
kept as final decisions.

For incapable doctors, generate machine’s decisions with specific threshold cdi with
the following algorithm. For each doctor di and each corresponding threshold cdi ,
random forest model makes prediction pppxq on each case x the in testing set, and
generates decision using the specific threshold cdi : pDpxq “ 1ppppxq ą cdiq.

5. Evaluating the Overall Performance. Combine the decisions of capable doctors
and machine algorithm on the testing set to obtain the overall FPR and TPR.

First, we initialize a single FPR/TPR pair, where the threshold of each incapable
doctor di is set to cdi,1, which corresponds to point of pxp, TPR|xpq on machine’s
ROC curve.

Second, we trace out the machine algorithm’s performance for threshold intervals of
incapable doctors by uniformly sampling N FPR/TPR pairs using following algo-
rithms.
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(a) For each incapable doctor di, set the step of threshold cdi,step “ pcdi,2 ´ cdi,1q{N

(b) For each j “ 1 to N :
Obtain a single FPR/TPR pair result Tj where the threshold of each incapable
doctor di is set to cdi,1 ` cdi,step ˚ j

(c) Collect the uniformly sampled FPR/TPR pairs tTju
N
j“1.
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Table 1: Replaced Doctors and Geographic Characteristics

Panel A: Bayesian Approach

(1) (2) (3) (4) (5) (6)
OLS OLS OLS Logit Logit Logit

gdp_all_province -0.0971 -0.0773 -0.393 -0.317
(-0.74) (-0.59) (-0.74) (-0.59)

township=1 0.103 0.101 0.417 0.411
(2.44) (2.40) (2.43) (2.39)

Constant 0.490 0.402 0.427 -0.0373 -0.399 -0.296
(10.59) (12.63) (8.02) (-0.20) (-3.05) (-1.37)

Observations 563 563 563 563 563 563
R2 0.001 0.011 0.011
Panel B: Frequentist Approach

(1) (2) (3) (4) (5) (6)
OLS OLS OLS Logit Logit Logit

gdp_all_province -0.184 -0.164 -0.752 -0.678
(-1.40) (-1.25) (-1.40) (-1.25)

township=1 0.108 0.105 0.439 0.427
(2.56) (2.48) (2.55) (2.47)

Constant 0.513 0.393 0.447 0.0533 -0.433 -0.214
(11.09) (12.39) (8.41) (0.28) (-3.30) (-0.98)

Observations 563 563 563 563 563 563
R2 0.004 0.012 0.014
t statistics in parentheses
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Figure 1: Individual and Aggregate TPR/FPR Pairs: Perspective of Jensen’s Inequality
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Figure 2: Human’s FPR/TPR Pair and Machine’s ROC Curve
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Figure 3: Sketch Map of Our Method for A Single Decision Maker
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Figure 4: Case 2
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Figure 5: Case 3
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Figure 6: Performance of RF Model and Doctors (Doctor’s Diagnosis >= 300)
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Figure 7: Performance of RF Model and Doctors (Doctor’s Diagnosis >= 500)
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Figure 8: Bayesian Case 1
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Figure 9: Bayesian Case 2
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(a) Doctor’s Diagnosis >= 300
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Figure 10: Result of Bayesian Approach
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Figure 11: Result of Frequentist Approach
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(a) Doctor’s Diagnosis >= 300

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

ROC of RF Model, AUC = 0.6912
All Doctors, TPR = 0.2135
RF Model, TPR = 0.3478

(b) Doctor’s Diagnosis >= 500

Figure 12: Result of Frequentist Approach 2
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(a) Doctor’s Diagnosis >= 300
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Figure 13: Result of Frequentist Approach 3
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Figure 14: Finite Sample ROC points
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Figure 15: Finite Sample ROC points
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Figure 16: Finite Sample ROC points
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Figure 17: Finite Sample ROC points
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Figure 18: Finite Sample ROC points
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