Multilevel Wavelet Decomposition Network for Interpretable Time Series Analysis

Jingyuan Wang, Ze Wang, Jianfeng Li, Junjie Wu

Beihang University

Outline

• Part I: Time series analysis and model inspiration

 Part II: mWDN framework with two model structures for different problems

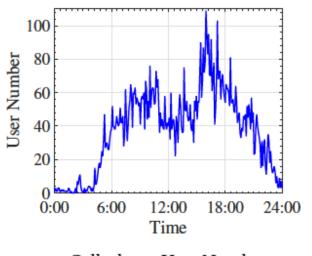
Part III: Head for interpretability-Importance analysis

Time Series Analysis

Time Series

$$X = \{X_1, X_2, ...\}.$$

- Time Series Analysis
 - Classification
 - Forecasting
 - Abnormal detection
 - Query by content



T-Wave

2
2
40 60 80 100 120

Time

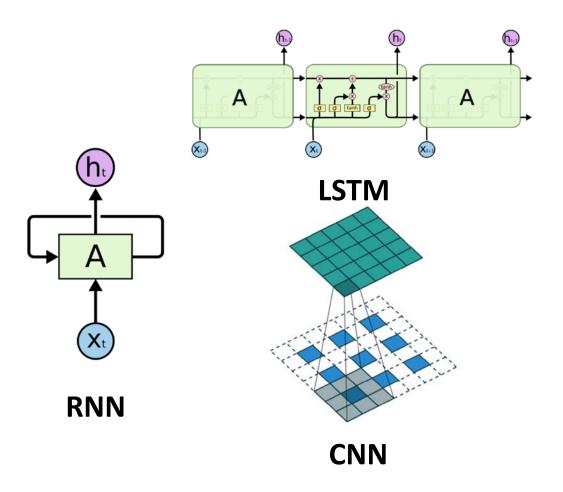
ECG Data

Cell-phone User Number

• • • •

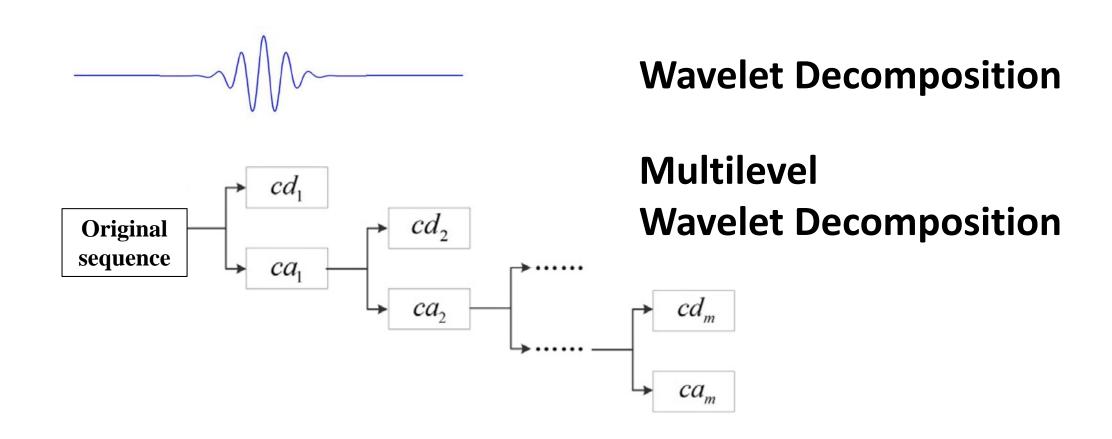
Deep Models for Time Series Analysis

Time Domain



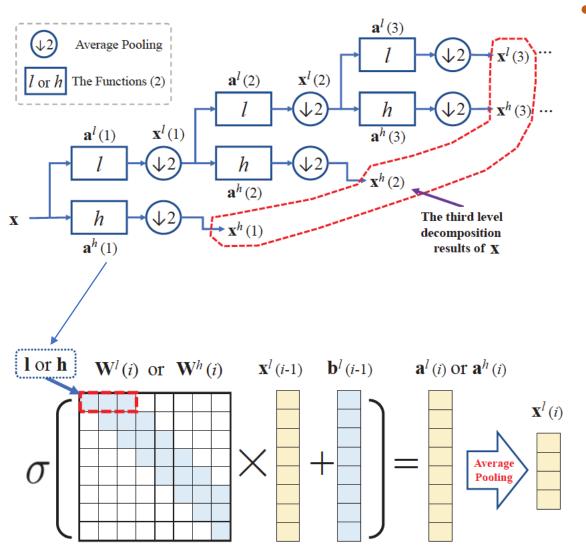
Frequency Domain

Time Series Analysis Best Practice



We propose a **wavelet-based** neural network structure called multilevel Wavelet Decomposition Network (mWDN) for building **frequency-aware** deep learning models for time series analysis.

Multilevel Wavelet Decomposition Network (mWDN)



Difference:

- Weight parameters in mWDN are initialized with db4 wavelet basis.
- All other epsilon weight parameters initialized with random small value.
- All weight parameters in mWDN can be fine-tuned,.
- Build a seamless end-to-end learning framework. $\begin{bmatrix} l_1 & l_2 & l_3 & \cdots & l_K & \epsilon \end{bmatrix}$

$$\mathbf{W}^{l}(i) = \begin{bmatrix} \epsilon & l_{1} & l_{2} & \cdots & l_{K-1} & l_{K} & \cdots & \epsilon \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots \\ \epsilon & \epsilon & \epsilon & \cdots & l_{1} & \cdots & l_{K-1} & l_{K} \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots \\ \epsilon & \epsilon & \epsilon & \cdots & \cdots & \cdots & l_{1} & l_{2} \\ \epsilon & \epsilon & \epsilon & \cdots & \cdots & \cdots & \epsilon & l_{1} \end{bmatrix}$$

$$+ \mathbf{b}^{l}(i),$$

$$\mathbf{a}^{l}(i) = \sigma\left(\mathbf{W}^{l}(i)\mathbf{x}^{l}(i-1) + \mathbf{b}^{l}(i)\right),$$

$$\mathbf{a}^{h}(i) = \sigma\left(\mathbf{W}^{h}(i)\mathbf{x}^{l}(i-1) + \mathbf{b}^{h}(i)\right),$$

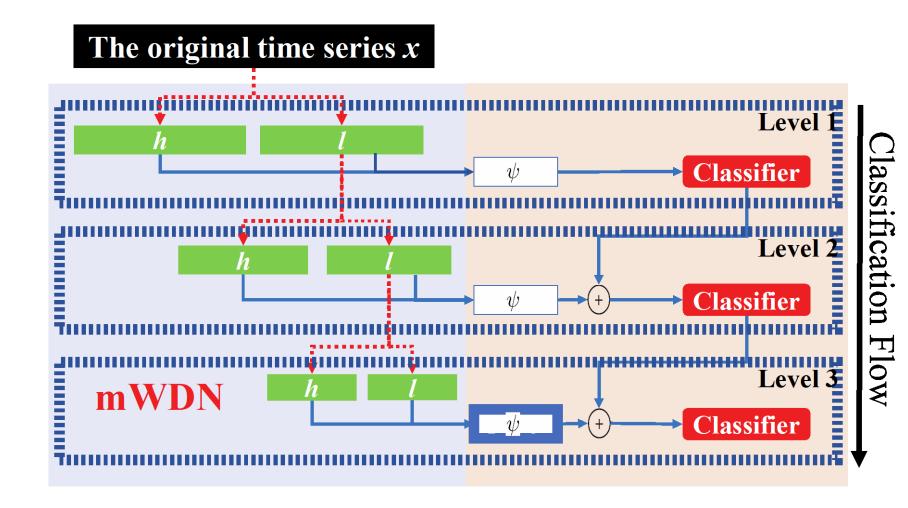
$$\mathbf{W}^{h}(i) = \begin{bmatrix} h_{1} & h_{2} & h_{3} & \cdots & h_{K} & \epsilon & \cdots & \epsilon \\ \epsilon & h_{1} & h_{2} & \cdots & h_{K-1} & h_{K} & \cdots & \epsilon \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots \\ \epsilon & \epsilon & \epsilon & \cdots & h_{1} & \cdots & h_{K-1} & h_{K} \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots \\ \epsilon & \epsilon & \epsilon & \cdots & \cdots & h_{1} & \cdots & h_{K-1} & h_{K} \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots \\ \epsilon & \epsilon & \epsilon & \cdots & \cdots & \cdots & h_{1} & h_{2} \\ \epsilon & \epsilon & \epsilon & \cdots & \cdots & \cdots & \epsilon & h_{1} \end{bmatrix}$$

Part II: mWDN Framework With Two Model Structures for Different Problems

- multi-level Wavelet Decomposition Network (mWDN)
- For classification: Residual Classification Flow network (RCF)

For forecasting: multi-frequency Long Short-Term Memory network (mLSTM)

Residual Classification Flow Network (RCF)



Forward Network

$$\mathbf{u}(i) = \psi\left(\mathbf{x}^{h}(i), \mathbf{x}^{l}(i), \theta^{\psi}\right),$$

Residual Learning Manner

$$\hat{\mathbf{c}}(i) = S\left(\hat{\mathbf{c}}(i-1) + \mathbf{u}(i)\right),\,$$

Classification Problem: UCR Dataset

Name	First paper or data creator	Number of classes	Size of training set	Size of testing set	Time series Length
Synthetic Control	Pham	6	300	300	60
Gun-Point	Ratanamahatana	2	50	150	150
CBF		3	30	900	128
Face (all)	Xi	14	560	1690	131
OSU Leaf	Gandhi	6	200	242	427
Swedish Leaf	Soderkvist	15	500	625	128
50Words	Rath	50	450	455	270
Trace	Roverso	4	100	100	275
Two Patterns	Geurts	4	1000	4000	128
Wafer	Olszewski	2	1000	6174	152
Face (four)	Ratanamahatana	4	24	88	350
Lightning-2	Eads	2	60	61	637
Lightning-7	Eads	7	70	73	319
ECG	Olszewski	2	100	100	96
Adiac	Jalba	37	390	391	176
Yoga	Xi	2	300	3000	426
Fish	Lee	7	175	175	463
Plane		7	105	105	144
Car		4	60	60	577
Beef	Tony Bagnall	5	30	30	470

- Test on 40 UCR datasets.
- Competitor models.
 - RNN, LSTM
 - MLP, FCN, ResNet
 - MLP-RCF, FCN-RCF, ResNet-RCF
 - Wavelet-RCF
- 10 times for each model.
- Evaluation (MPCE):

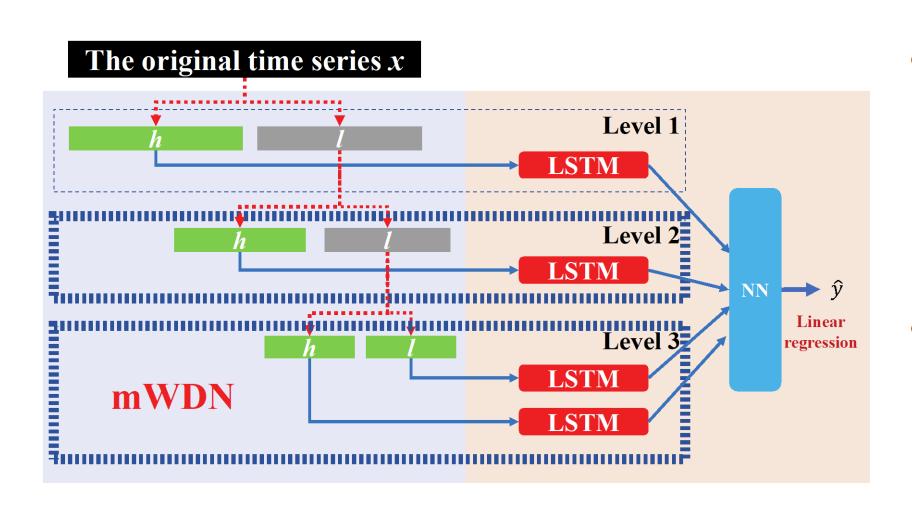
$$MPCE = \frac{1}{K} \sum_{l=1}^{K} \frac{e_k}{C_k}.$$

Err Rate	RNN	LSTM	MLP	FCN	ResNet	MLP-RCF	FCN-RCF	ResNet-RCF	Wavelet-RCF
Adiac	0.233	0.341	0.248	0.143	0.174	0.212	0.155	0.151	0.162
Beef	0.233	0.333	0.167	0.25	0.233	0.06	0.03	0.06	0.06
CBF	0.189	0.118	0.14	0	0.006	0.056	0	0	0.016
ChlorineConcentration	0.135	0.16	0.128	0.157	0.172	0.096	0.068	0.07	0.147
CinCECGtorso	0.333	0.092	0.158	0.187	0.229	0.117	0.014	0.084	0.011
CricketX	0.449	0.382	0.431	0.185	0.179	0.321	0.216	0.297	0.211
CricketY	0.415	0.318	0.405	0.208	0.195	0.254	0.172	0.301	0.192
CricketZ	0.4	0.328	0.408	0.187	0.187	0.313	0.162	0.275	0.162
DiatomSizeReduction	0.056	0.101	0.036	0.07	0.069	0.013	0.023	0.026	0.028
ECGFiveDays	0.088	0.417	0.03	0.015	0.045	0.023	0.01	0.035	0.016
FaceAll	0.247	0.192	0.115	0.071	0.166	0.094	0.098	0.126	0.076
FaceFour	0.102	0.364	0.17	0.068	0.068	0.102	0.05	0.057	0.058
FacesUCR	0.204	0.091	0.185	0.052	0.042	0.15	0.087	0.102	0.087
50words	0.316	0.284	0.288	0.321	0.273	0.316	0.288	0.258	0.3
FISH	0.126	0.103	0.126	0.029	0.011	0.086	0.021	0.034	0.026
GunPoint	0.1	0.147	0.067	0	0.007	0.033	0	0.02	0
Haptics	0.594	0.529	0.539	0.449	0.495	0.480	0.461	0.473	0.476
InlineSkate	0.667	0.638	0.649	0.589	0.635	0.543	0.566	0.578	0.572
ItalyPowerDemand	0.055	0.072	0.034	0.03	0.04	0.031	0.023	0.034	0.028
Lighting2	0	0	0.279	0.197	0.246	0.213	0.145	0.197	0.162
Lighting7	0.288	0.384	0.356	0.137	0.164	0.179	0.091	0.177	0.144
MALLAT	0.119	0.127	0.064	0.02	0.021	0.058	0.044	0.046	0.024
MedicalImages	0.299	0.276	0.271	0.208	0.228	0.251	0.164	0.188	0.206
MoteStrain	0.133	0.167	0.131	0.05	0.105	0.105	0.076	0.032	0.05
NonInvasiveFatalECGThorax1	0.09	0.08	0.058	0.039	0.052	0.029	0.026	0.04	0.042
NonInvasiveFatalECGThorax2	0.069	0.071	0.057	0.045	0.049	0.056	0.028	0.033	0.048
OliveOil	0.233	0.267	0.6	0.167	0.133	0.03	0	0	0.012
OSULeaf	0.463	0.401	0.43	0.012	0.021	0.342	0.018	0.021	0.021
SonyAIBORobotSurface	0.21	0.309	0.273	0.032	0.015	0.193	0.042	0.032	0.052
SonyAIBORobotSurfaceII	0.219	0.187	0.161	0.038	0.038	0.092	0.064	0.083	0.072
StarLightCurves	0.027	0.035	0.043	0.033	0.029	0.021	0.018	0.027	0.03
SwedishLeaf	0.085	0.128	0.107	0.034	0.042	0.089	0.057	0.017	0.046
Symbols	0.179	0.117	0.147	0.038	0.128	0.126	0.04	0.107	0.084
TwoPatterns	0.005	0.001	0.114	0.103	0	0.070	0	0	0.005
uWaveGestureLibraryX	0.224	0.195	0.232	0.246	0.213	0.213	0.218	0.194	0.162
uWaveGestureLibraryY	0.335	0.265	0.297	0.275	0.332	0.306	0.232	0.296	0.241
uWaveGestureLibraryZ	0.297	0.259	0.295	0.271	0.245	0.298	0.265	0.204	0.194
wafer	0	0	0.004	0.003	0.003	0.003	0	0	0
WordsSynonyms	0.429	0.343	0.406	0.42	0.368	0.391	0.338	0.387	0.314
yoga	0.202	0.158	0.145	0.155	0.142	0.138	0.112	0.139	0.128
Winning times	2	2	0	9	6	2	19	7	7
AVG arithmetic ranking	7.425	6.825	7.2	4.025	4.55	5.15	2.175	3.375	3.075
AVG geometric ranking	6.860	6.131	7.043	3.101	3.818	4.675	1.789	2.868	2.688
MPCE	0.039	0.043	0.041	0.023	0.025	0.028	0.017	0.021	0.019

Part II: mWDN Framework With Two Model Structures for Different Problems

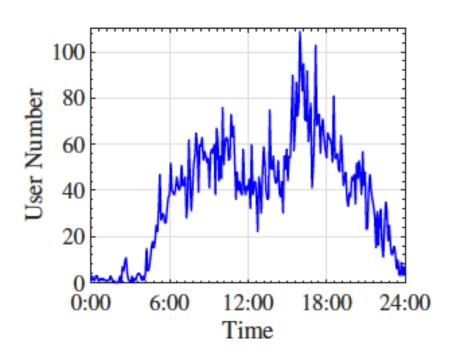
- multi-level Wavelet Decomposition Network (mWDN)
- For classification: Residual Classification Flow network (RCF)
- For forecasting: multi-frequency Long Short-Term Memory network (mLSTM)

Multi-frequency Long Short-Term Memory network (mLSTM)



- Using N+1 LSTM to forecasts the future state of one sub-series in X(N).
- Fuse the LSTM output with a fully connected neural network.

Forecasting Problem: Wuxi Cell-phone User Data



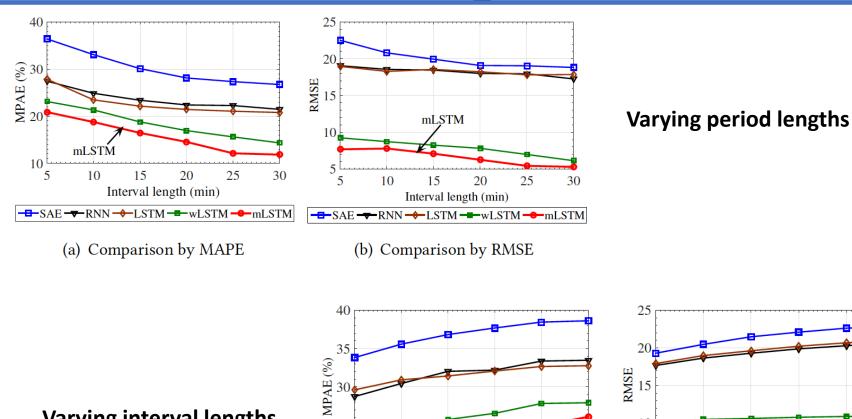
Cell-phone User Number

- Test on real-life WuxiCellPhone datasets.
 - From 20 base stations during 2 weeks.
 - Time granularity is 5 minutes.
- Competitor models.
 - SAE
 - RNN, LSTM
 - wLSTM
- Evaluation.
 - MAPE
 - RMSE

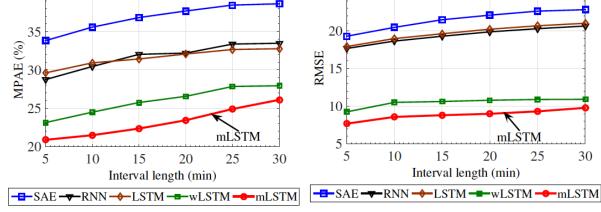
MAPE =
$$\frac{1}{T} \sum_{t=1}^{T} \frac{|\hat{x}_t - x_t|}{x_t} \times 100\%$$
,

RMSE =
$$\sqrt{\frac{1}{T} \sum_{t=1}^{T} (\hat{x}_t - x_t)^2}$$
,

Forecasting Problem: Cell-phone User Number **Forecasting in Wuxi**



Varying interval lengths



(a) Comparison by MAPE

(b) Comparison by RMSE

Outline

- Part I: Time series analysis and model inspiration
- Part II: mWDN framework with two model structures for different problems
- Part III: Head for interpretability-Importance analysis

Importance Analysis

Define importance of inputs as well as sub-series nodes:

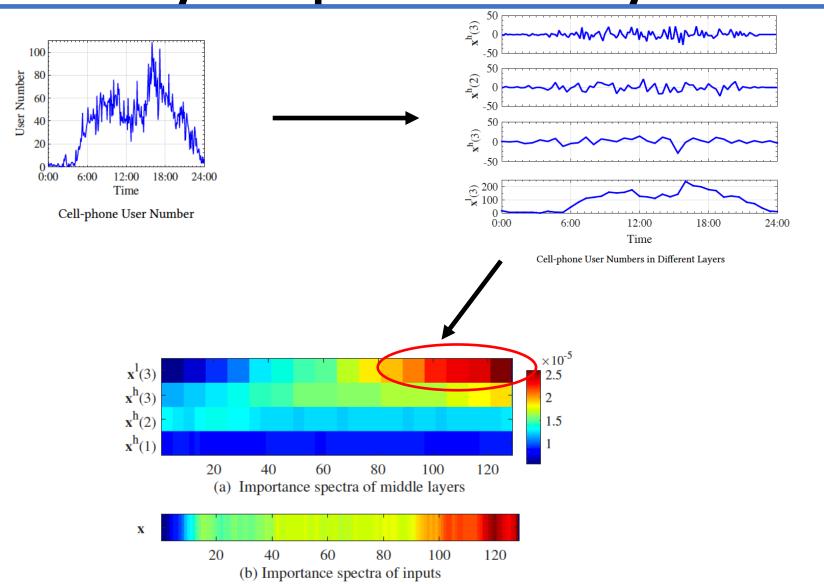
$$S_{a}(\mathbf{x}) = \left| \frac{\partial M(a(\mathbf{x}))}{\partial a(\mathbf{x})} \right| = \left| \lim_{\varepsilon \to 0} \frac{M(a(\mathbf{x})) - M(a(\mathbf{x}) - \varepsilon)}{\varepsilon} \right|.$$

• Importance of a node with respect to a training dataset:

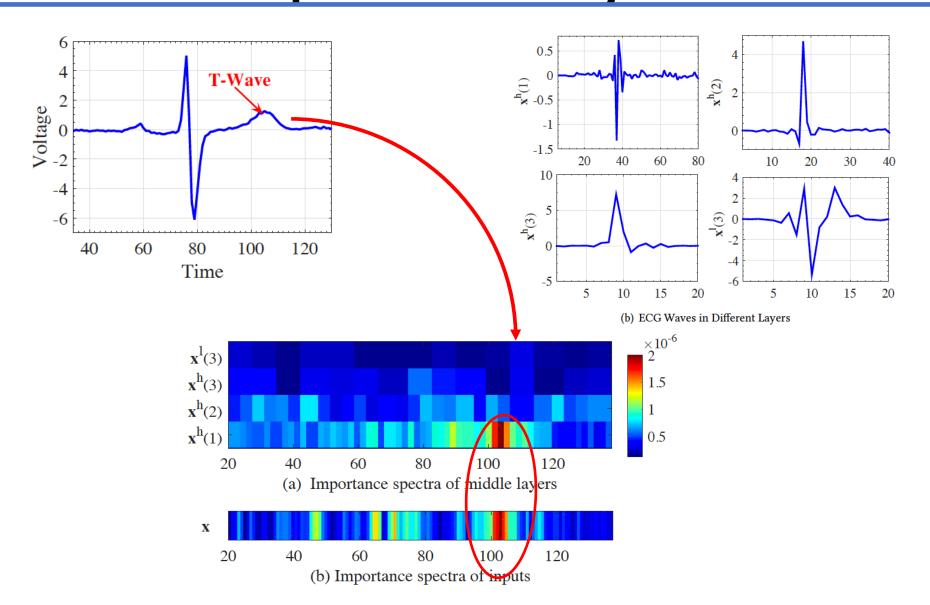
$$I(a) = \frac{1}{J} \sum_{j=1}^{J} S_a(\tilde{\mathbf{x}}^j).$$

We **quantify the importance** of each middle layer to the final output of the mWDN based models by estimating the **partial derivatives** of final prediction to intermediate sub-sequence generated by Multilevel Wavelet Decomposition Network.

Forecasting: Cell-phone User Number in Wuxi with Layer Importance Analysis



Classification: ECG Data of UCR with Layer Importance Analysis



Q&A

Thanks!