

The 2016 IEEE International Conference on Data Mining Barcelona, Spain. December 12-16, 2016

Traffic Speed Prediction and Congestion Source Exploration: A Deep Learning Method

Jingyuan Wang, Qiang Gu, Junjie Wu, Guannan Liu, Zhang Xioing

Beihang University, Beijing, China

Targets of our work

- Traffic speed prediction
 - Problem: Predicting future traffic speed of a road segment using history speed data
 - -Users: car drivers

- Congestion source exploration
 - Problem: Discovering segments that may cause traffic congestions
 - -Users: urban planners

Related works

- Traffic speed prediction
 - —Before 2000: ARIMA and its variations
 - ARIMA (1979), Kohonen-ARIMA (1996), ARIMAX (1999), etc.
 - —After 2000: ANN and SVR
 - SVR (2004), OLWSVR (2013), ANN (2001), fuzzy neural network (2006), etc.
 - —After 2014: Deep Learning
 - RNN-RBM (PlosOne2015), SAE (T-ITS2014, T-ITS2015)
- Shortcomings
 - —Consider traffic prediction as a regular time series prediction problem.
 - —Fail to model some unique features of the traffic scenarios.

Unique features

- Spatio-temporal correlations
 - —Congestion may be caused by a segment in the downstream of a road.
 - —Traffic congestion on a road always last a very long time.
- Spatio-temporal locality

No-congestion

Congestion

Unique features

• Unpredictable events

Framework

• Error Feedback Recurrent CNN (eRCNN)

1) The Spatio-Temporal Input Matrix

Function: Modeling ST relationship

• The Spatio-Temporal Input Matrix

• The Spatio-Temporal Input Matrix

Framework

Error Feedback Recurrent CNN

2) The CNN-based Feature Extracting

Function: Extracting ST correlation and locality Feature

The CNN-based Feature Extracting

Insight: There exists a number of local patterns (spatio-temporal trends) in the spatio-temporal input matrix.

Idea: We adopt a Convolutional Neural Network based structure to extract spatio-temporal trend features from the spatio-temporal input matrix.

The CNN-based Feature Extracting

Convolution layer:

$$c_k^{p,q} = \sigma \left(b_k + \sum_{x=0}^i \sum_{y=0}^i w_k^{x,y} m^{p+x,q+y} \right)$$

Using several filters to convolute the input matrix.

Pooling layer:

$$p_c = \frac{1}{N} \sum_{p} \sum_{q} c_k^{p,q}$$

Using average pooling to down sampling the convolution neuro matrix.

Input Matrix

Convolution

Pooling

Framework

Error Feedback Recurrent CNN

3) The Error-Feedback Recurrent Layer

Function: Handle effect of sudden events

• The Error-Feedback Recurrent Layer

A speed drop off caused by a unpredictable event.

Input: before 5 > after 1

The prediction model input does not contain enough information about the event.

- The Error-Feedback Recurrent Layer
 - —Idea: feed the prediction error back to the network

Framework

Error Feedback Recurrent CNN

4) The Regression Output Layer Function: speed regression

The Output Layer

Modified ReLU

$$\sigma(x) = \begin{cases} 0 & \text{if } x \le 0 \\ x & \text{if } 0 < x < 1 \\ 1 & \text{if } x \ge 1 \end{cases}$$

Speed Normalization

$$\sigma(x) = \begin{cases} 0 & \text{if } x \le 0 \\ x & \text{if } 0 < x < 1 \\ 1 & \text{if } x \ge 1 \end{cases} \qquad \psi(x) = \begin{cases} 1 & \text{if } x \ge 80 \text{ km/h} \\ 1 - \frac{80 - x}{70} & \text{if } x \in [10, 80] \text{ km/h} \\ 0 & \text{if } x \le 10 \text{ km/h} \end{cases}$$

Network Training

• Parameters Training: Back Propagation

Network Training

Pre-Training and Fine-Tuning eRCNN

Experiments: Data Description

- The 2nd ring road and the 3rd ring road
 - —About 10% of the total traffic flow in Beijing downtown area.
 - The average length of each road segment is 400 meters.
 - The traffic speed of a segment is updated every **5 minutes**.
- The data set was collected from the
 25 weekdays in Nov. 2013.
 - The data of the first 20 weekdays were used as the training set.
 - The remaining **five days** is the test set.

The 2nd ring road

- Benchmarks
 - —Auto Regression Integrated Moving Average (ARIMA)[1]
 - —Support Vector Regression (SVR) [11]
 - —Stacked Auto Encoders (SAE) [5]
 - -1D Convolutional Neural Network (1D-CNN)
 - the same as the CNN part of eRCNN, but the input matrix reduces to the time series of the traffic speeds of the segment to be predicted.
 - benchmark to test the spatio-temporal input matrix.
 - —Convolutional Neural Network (CNN)
 - the same as eRCNN, except the error feedback procedure is removed.
 - benchmark to test the performance of the error feedback scheme.

• Overall performance: scenario I

The 2nd ring road

(a) MAE Comparison

eRCNN 0.13 0.1 30

(c) RMSE Comparison

MAPE Period length (min) X ARIMA → SVR → SAE → 1D-CNN → CNN → eRCNN

(a) MAE Comparison

(b) MAPE Comparison The 3rd ring road

(c) RMSE Comparison

• Overall performance: scenario II

(a) MAE Comparison

The 2nd ring road

(c) RMSE Comparison

(a) MAE Comparison

 $\begin{array}{c} \text{(b) MAPE Comparison} \\ \textbf{The } 3^{rd} \ \textbf{ring road} \end{array}$

(c) RMSE Comparison

Performance with Time Variation

Prediction delay

- 19:00 to 19:30, the traffic recovers from the last traffic jam of the night peak
- around 20:20, the traffic speed decreases again due to a small accident

Performance

- eRCNN captures the abrupt changes in speeds
- the prediction curve exactly matches the real values
- CNN model does not follow the abrupt changes of traffic speeds

Targets of our work

- Traffic speed prediction
 - Problem: Predicting future traffic speed of a road segment using history speed data
 - —Applications: navigation
 - —Users: car drivers
- Congestion exploration
 - **—Discovering segments that cause traffic congestions**

source

-Users: urban planners

Importance analysis for road segments

We use the traffic speed of the segment *i-m* to predict the speed of the segment *i*

The segment *i-m* has a **influence** to the segment *i*

We define the *influence* of segment i to segment j as the derivative of v_i to v_i , i.e.

We approximately calculate the *influence* of the segment s-m to s at time t as

We define the *importance* of the segment k as its influence to all segments in the same road with it, i.e.

$$I_i(j) = \frac{\mathbf{d}f(v_i)}{\mathbf{d}v_i} = \lim_{\varepsilon \to 0} \frac{f(v_i) - f(v_i - \varepsilon)}{\varepsilon}$$

$$I_{s-m,t}(s) = \sum_{k=t}^{t-n} \left| \frac{\partial o_{s,t+1}}{\partial v_{s-m,k}} \right|$$

$$Importance_k = \sum_t \sum_{s \neq k} I_{k,t}(s).$$

Importance analysis for road segments

• The importance of segments in the 2nd and 3rd ring roads.

(a) The Inner Loop (clockwise)

(b) The Outer Loop (anti-clockwise)

Conclusion

- In this paper, we proposed a novel deep learning method called eRCNN for traffic speed prediction of high accuracy.
- Experiments on real-world traffic speed data of the ring roads of Beijing city demonstrated the advantages of eRCNN to the excellent competitors.
- In particular, we illustrated how to explore the congestion sources from eRCNN.

THANK YOU!

- Performance with Pre-Training
 - —eRCNN is greatly enhanced by the pre-training scheme even facing the drastic speed changes during the morning and evening peaks.

With pre-training - × - Without pre-training · Only pre-training

Importance analysis for road segments

Input Matrix Convolution Pooling

feedback

Output

$$\frac{\partial c_k^{p,q}}{\partial \mathbf{V}} = c_k^{p,q} (1 - c_k^{p,q}) \mathbf{W}_k^{(C)} \qquad \frac{\partial \mathbf{p}_k}{\partial \mathbf{V}} = \sum_i \sum_j w_{i,j,k}^{(R)} \frac{\partial p_k^{i,j}}{\partial \mathbf{V}} \qquad \frac{\partial o}{\partial \mathbf{V}} = \delta(o) \mathbf{w}^{(OR)} \frac{\partial \mathbf{r}^{(R)}}{\partial \mathbf{V}}$$

$$\frac{\partial p_k^{i,j}}{\partial \mathbf{V}} = \frac{1}{4} \sum_{m=2i-1}^{2i} \sum_{n=2j-1}^{2j} \frac{\partial c_k^{m,n}}{\partial \mathbf{V}} \qquad \qquad \frac{\partial r^{(R)}}{\partial \mathbf{V}} = r^{(R)} (1 - r^{(R)}) \sum_k \frac{\partial \mathbf{p}_k}{\partial \mathbf{V}}$$

• The Error-Feedback Recurrent Layer

