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Abstract—Traffic speed prediction is a long-standing and
critically important topic in the area of Intelligent Trans-
portation Systems (ITS). Recent years have witnessed the
encouraging potentials of deep neural networks for real-
life applications of various domains. Traffic speed prediction,
however, is still in its initial stage without making full use
of spatio-temporal traffic information. In light of this, in this
paper, we propose a deep learning method with an Error-
feedback Recurrent Convolutional Neural Network structure
(eRCNN) for continuous traffic speed prediction. By integrating
the spatio-temporal traffic speeds of contiguous road segments
as an input matrix, eRCNN explicitly leverages the implicit
correlations among nearby segments to improve the predictive
accuracy. By further introducing separate error feedback
neurons to the recurrent layer, eRCNN learns from prediction
errors so as to meet predictive challenges rising from abrupt
traffic events such as morning peaks and traffic accidents.
Extensive experiments on real-life speed data of taxis running
on the 2nd and 3rd ring roads of Beijing city demonstrate the
strong predictive power of eRCNN in comparison to some state-
of-the-art competitors. The necessity of weight pre-training
using a transfer learning notion has also been testified. More
interestingly, we design a novel influence function based on
the deep learning model, and showcase how to leverage it to
recognize the congestion sources of the ring roads in Beijing.

Keywords-Intelligent transportation systems; Deep learning;
Spatio-temporal; Time series prediction; Convolutional neural
network;

I. INTRODUCTION

Traffic speed prediction, as a sub-direction of traffic
prediction in the area of Intelligent Transportation Systems
(ITS), has long been regarded as a critically important
way for decision making in transportation navigation, travel
scheduling, and traffic management. Traditional models, in-
cluding auto-regression methods [1] and supervised learning
methods such as support vector regression [2] and artificial
neural networks [3], all treat traffic speed prediction as
a time-series forecasting problem, and thus run into the
bottleneck gradually.

In recent years, with the rapid development of deep
learning techniques, more and more researchers in ITS began
to adopt deep neural networks for high-accuracy traffic
prediction. The rich studies along this line, however, are

mostly concerned with traffic flow and congestion predic-
tions [4], [5]. Traffic speed prediction, therefore, is still an
open problem in the deep-learning era, with two notable
challenges as follows:

• How to characterize the latent interactions of road seg-
ments in traffic speeds so as to improve the predictive
performance of a deep neural network?

• How to model the abrupt changes of traffic speeds in
case of emerging events such as morning peaks and
traffic accidents?

These indeed motivate our study. Specifically, in this
paper, we propose a deep learning method using an Error-
feedback Recurrent Convolutional Neural Network (eRC-
NN) for continuous traffic speed prediction. The novel
contributions of our study are summarized as follows.

First, we take the matrix containing the spatio-temporal
traffic speeds of contiguous road segments as the input of
eRCNN. By this means, the complicated interactions of
traffic speeds among nearby road segments can be captured
by eRCNN naturally without elaborative characterization,
which is crucial to the high-accuracy prediction of eRCNN.

Second, we introduce separate error-feedback neurons to
the recurrent layer of eRCNN, for the purpose of capturing
the prediction errors from the output layer. This empowers
eRCNN the ability to model the abrupt changes in traffic
speeds due to some emerging traffic events like the morning
peaks and traffic accidents.

Third, we put forward a novel weight pre-training method,
which adopts a transfer-learning notion by clustering similar
yet contiguous road segments into a group for the generation
of a same set of initial weights. This “sharing scheme” not
only helps to reduce the learning process of eRCNN for
every road segment, but also improves the chance of finding
better optimal solutions.

Finally, we design a novel influence function based on
the deep learning model, and illustrate how to leverage it to
recognize the congestion sources of the ring roads in Beijing.
To the best of our knowledge, we are among the earliest to
explore how to learn road congestion sources from deep
learning models.



Figure 1. The framework of the eRCNN model.

Extensive experiments on real-life speed data of taxis
running on the 2nd and 3rd ring roads of Beijing city demon-
strate the strong predictive power of eRCNN, even with
the presence of state-of-the-art competitors. The inclusion
of spatio-temporal information of contiguous segments, the
introduction of error-feedback neurons to the recurrent layer,
and the weight pre-training of similar segments, all give a
positive boost to the high accuracy of eRCNN.

II. THE ERCNN FRAMEWORK

Fig. 1 shows the framework of the eRCNN model con-
taining five network layers, including the input layer (LI),
the convolution layer (LC), the pooling layer (LP), the
error-feedback recurrent layer (LeR), and the output layer
(LO). The function of the input layer is to organize the
original traffic speed data as a spatio-temporal input matrix,
which can be processed by the CNN layers of eRCNN. The
function of the convolution layer and the pooling layer is
to extract features from the spatio-temporal input matrix.
The function of the error-feedback recurrent layer is to
compensate prediction errors using predicting results of
previous periods. The output layer uses a modified rectified
linear unit to generate the predictions of traffic speeds.

A. The Spatio-Temporal Input Matrix

In order to exploit spatial and temporal correlation infor-
mation, we construct a spatio-temporal input matrix in the
input layer. Given a road segment s, we define the traffic
speed of the segment s at the time t as vs,t. When we use
the proposed model to predict vs,t+1, the spatio-temporal
matrix for the input layer is defined as

V =



vs−m,t vs−m,t−1 · · · vs−m,t−n

...
... · · ·

...
vs−1,t vs−1,t−1 · · · vs−1,t−n

vs,t vs,t−1 · · · vs,t−n

vs+1,t vs+1,t−1 · · · vs+1,t−n

...
... · · ·

...
vs+m,t vs+m,t−1 · · · vs+m,t−n


. (1)

The column vector v:t contains traffic speed data of all
the segments in a range that m segments upstream and

downstream of the segment s at the time t, and the row
vector vs,: contains traffic speed data of the segment s from
time t to t − n. In this way, the input matrix V contains
all the speed information that is spatially and temporally
adjacent to the variate to be predicted, i.e., vs,t+1.

B. The CNN-based Feature Extracting
In the eRCNN model, we adopt a CNN-based network

structure to extract features from the spatio-temporal input
matrix. The CNN structure contains a convolution layer and
a pooling layer, and then we introduce the two layers in this
subsection.

1) The Convolution Layer: The convolution layer is a
core part of the CNN model [6]. The convolution layer con-
nects the spatio-temporal input matrix with several trainable
filters, with each being a i× i weight matrix. We define the
k-th filter as W

(C)
k . The convolution layer uses the W

(C)
k

to zigzag scan the input matrix to calculate a convolution
neuron matrix. The (p, q) element of the convolution neuron
matrix generated by the filter k is calculated by

cp,qk = sigmoid

(
bk +

i∑
x=0

i∑
y=0

wx,y
k mp+x,q+y

)
, (2)

where bk is a bias for the filter k, wx,y
k is the (x, y)

element of W
(C)
k , mp+x,q+y is the (p + x, q + y) element

of the spatio-temporal matrix V. More details about the
implementation of the CNN’s convolution layer could be
found in [7].

2) The Pooling Layer: The pooling layer is another
important component of the CNN model, which is used
to reduce the dimension of the convolution neuron matrix
through an average down sampling method. In the proposed
eRCNN model, the pooling layer divides the convolution
neuron matrix into j × j disjoint regions, and uses the
averages of each region to represent the characteristic of the
convolution neurons in the region. Through the processing
of the pooling layer, the dimension of the spatio-temporal
matrix is reduced as about 1/(j× j) of its original size. The
output of the pooling layer is a feature vector generated
through vectoring the down sampled convolution neuron
matrix, which is denoted as p.

C. The Error-Feedback Recurrent Layer
An important characteristic of traffic speed data is the

abrupt change of speed within a short time period. For
example, during the beginning 30 minutes of morning peaks,
the traffic speed of the Beijing ring roads could drop
from 70km/h to 30km/h; while after a rear-end collision
traffic accident, the traffic speed could drop from 50km/h to
20km/h. In general, it is hard to predict the traffic conditions
with these abrupt speed changes using traditional neural
network structures. In this way, we introduce an error-
feedback recurrent layer to improve prediction performance
of our model in the above scenarios.



In the error-feedback recurrent layer, a group of neurons
are connected with the feature vector p that is generated by
the pooling layer. The k-th neuron rk is fully connected with
all the elements of p through a sigmoid activation function,
i.e.,

r
(R)
k = sigmoid

(
w

(R)
k p+ b

(R)
k

)
, (3)

where w
(R)
k is the connection weight vector for the neuron

rk, and b(R)
k is the bias.

In the traditional RNN model [8], rk still needs to be con-
nected with the hidden layer neurons of the last prediction
steps, i.e.,

r
(R)
k (t) = sigmoid

(
w

(R)
k p+ w̃kr(t− 1) + b

(R)
k

)
, (4)

where r(t − 1) is the neuron vector of the t − 1 step,
and w̃k is the corresponding wight vector. However, this
network structure does not consider the prediction errors,
which is indeed useful in the scenarios of abrupt speed
changes. Specifically, if we have the information about the
prediction errors at the previous steps, we can design a
model to compensate the prediction error at the current step.

In order to overcome the limitations of RNN, we introduce
a group of error-feedback neurons in the recurrent layer.
The value of the k-th error-feedback neuron r

(E)
k at the t

prediction step is defined as:

r
(E)
k (t) = sigmoid

(
w

(E)
k e(t) + b

(E)
k

)
, (5)

where b(E)
k is a bias, w(E)

k is a weight needs to train. The
vector e(t− 1) in Eq. (5) is a prediction error vector:

e(t) = [y(t− 1)− o(t− 1), . . . , y(t− l)− o(t− l)] , (6)

where y(t− l) is the real traffic speed at the step t− l, and
o(t− l) is the predicted speed at the step t− l.

The output of the error-feedback recurrent layer is a
combination of the regular neurons r(R) and the error-
feedback neurons r(E), i.e.,

r = [r(R); r(E)]. (7)

In the error-feedback recurrent layer, we do not connect
the input of the current step and the error-feedback of the
previous steps together in the same group of neurons as in
traditional RNN. On the contrary, the input is connected
into separate neuron groups. This is because the current
input and the recurrent input in our model have different
characteristics.

D. The Output Layer

Considering the error-feedback recurrent layer, the output
neurons r is then used as an input, and the output layer
generates a final prediction value as

o = σ
(
w(OR)r(R) +w(OE)r(E) + b(O)

)
, (8)

where w(OR), w(OE), and b(O) are the weights and bias of
the output layer. In the output layer, we adopts a modified
ReLU function as the activation function, which is defined
as

σ(x) =


0 if x ≤ 0

x if 0 < x < 1

1 if x ≥ 1

. (9)

The output of Eq. (8) can be regarded as a linear combination
of the traffic speed prediction (generated by the input of
current step) and the error compensation (generated by
previous steps).

Because the output of Eq. (9) is in the range of [0, 1],
we re-scale the traffic speed of road segments into the same
range. According to the actual situation of urban traffic, we
adopt the following reflect function to re-scale the traffic
speed data:

ψ(x) =


1 if x ≥ 80 km/h

1− 80−x
70 if x ∈ [10, 80] km/h

0 if x ≤ 10 km/h

. (10)

In fact, in order to keep the input and output at the same
scale, the traffic speeds in the input spatio-temporal matrix
V are also re-scaled by the function in Eq. (10).

III. NETWORK TRAINING

A. Parameters Training

The parameters need to be trained in the eRCNN model
include the weight matrix set W(C) and the bias set b(C)

of the convolution layer, the weight vector sets w(R), w(E)

and the bias sets b(R), b(E) of the error feedback recurrent
layer, the weight vector w(O) = [w(OR);w(OE)], and the
bias b(O) of the output layer. For the sake of simplicity, we
introduce θ to represent all the parameters.

θ =
{
W(C),w(R),w(E),w(O), b(C), b(R), b(E), b(O)

}
.

(11)
The parameter training is achieved by a mini-batch s-

tochastic gradient descent (SGD) method. For a road seg-
ment, the objective of parameters training is to minimize the
squared error for all the training samples, i.e.,

L =
1

2

∑
k

(yk − ok)2. (12)

In the mini-batch SGD, the training samples are divided
into several mini-batches. For a mini-batch, we calculate the
partial derivatives of L with respect to all the parameters,
and then update the parameters using the following equation,

θ ← θ − α∂L
∂θ
, (13)

where α is an adjustable learning rate.
The partial derivatives of L to the parameters are calcu-

lated by the error back propagation (BP) algorithm. For a



mini-batch with m samples, the partial derivatives of L with
respect to the output layer parameters w(O) and b(O) are

∂L

∂w(O)
=

1

m

∑
m

d(O)(t)[r(R); r(E)],

∂L

∂b(O)
=

1

m

∑
m

d(O)(t),

(14)

where d(O)(t) is the error propagated from the output layer
at the prediction step t. For a given road segment, we
define o(t) as the prediction output at the step t, and y(t)
is the corresponding real traffic speed, and then d(O)(t) is
calculated as

d(O)(t) = δ (o(t)) (y(t)− o(t))−
∑
k

w̃
(E)
k d

(E)
k (t), (15)

where the function δ(x) is with a form of

δ(x) =

{
1 if 0 < x < 1

0 if x = 0 or 1
. (16)

In the second term of the Eq.(15), w̃(E)
k is an inverted form

of the weight vector w(E)
k , i.e.,

w̃
(E)
k = [w

(E)
k (l), . . . , w

(E)
k (1)], (17)

and d
(E)
k (t) is the error propagated from the prediction time

t+ 1 to t+ l, i.e.,

d
(E)
k (t) = [d

(E)
k (t+ 1), . . . , d

(E)
k (t+ l)]. (18)

For a given time t, d(E)
k (t) is calculated as

d
(E)
k (t) = d

(O)
k (t)w

(OE)
k r

(E)
k (t)(1− r(E)

k (t)). (19)

Moreover, we calculate the partial derivatives of L to the
weight parameters of the error-feedback recurrent layer as

∂L

∂w
(E)
k

=
1

m

∑
m

d
(E)
k (t)e(t− 1), (20)

and
∂L

∂w
(R)
k

=
1

m

∑
m

d
(R)
k (t)p, (21)

where d(R)
k at the time t is calculated as

d
(R)
k (t) = d

(O)
k (t)w

(OR)
k r

(R)
k (t)(1− r(R)

k (t)). (22)

The partial derivatives to bias parameters for the error-
feedback recurrent layer is calculated as

∂L

∂b
(R)
k

=
1

m

∑
m

d
(R)
k (t). (23)

The partial derivative of weight set W(C) and bias set
b(C) in the convolution layer is calculated according to
the standard CNN BP algorithm [7], which will not be
elaborated here.

Algorithm 1 The segments clustering algorithm.
Require: A segment set S = {s1, s2, . . . , sm} that includes

m segments of a road. A Pearson correlation coefficient
threshold P .

1: Initialization: The segment cluster Hi, and i = 0.
2: while not all segments in the set S are clustered do
3: s0 ← a segment that is not clustered.
4: Hi ← {s0}, n← 1.
5: sx ← a segment that is contiguous with the segments

in Hi.
6: while 1

n

∑
∀s∈Hi

Pearson(sx, s) > P do
7: Hi ← {Hi, sx}, n← n+ 1.
8: sx ← a segment that is contiguous with the seg-

ments in Hi.
9: end while

10: i← i+ 1.
11: end while
12: Output: The segment clusters H0,H1, . . . , Hi.

B. Pre-Training and Fine-Tuning eRCNN

Since a road is divided into several segments, different
segments may have different traffic speed variation patterns.
Thus, we need to train special model parameters for each
segment. However, in the real situation, the training data for
a specific segment is limited in the speed samples. If the
training data is not enough, the eRCNN model may suffer
from over fitting problem. In order to prevent the over fitting
problem and take full advantages of the training data of all
the road segments, we develop an approach to cluster road
segments as several subsets, and use all the speed data of the
segments in the same subset to pre-train an eRCNN model.

The clustering algorithm used here is a Pearson correlation
coefficient based algorithm. Using the Pearson correlation
coefficient as a similarity measurement, the clustering al-
gorithm is presented in Algorithm 1. To be more specific,
Algorithm 1 clusters road segments that are contiguous and
with Pearson correlation coefficients higher than a threshold
as a same set. The segments in the same set share their traffic
speed as a pre-training data set. Through this approach, we
transfer knowledge of other segments into the model of a
certain segment.

Furthermore, using parameters of the pre-training model
as the initial values of the parameters, we further fine-tune
the eRCNN model for each segment by utilizing the local
spatio-temporal data. Specifically, we divide the 24 hours
of one day into seven time ranges, i.e., [0:00, 6:00], [6:00,
9:00], [9:00, 12:00], [12:00, 15:00], [15:00, 18:00], [18:00,
21:00], and [21:00, 0:00]. For a segment in a certain time
range, we fine tune the special parameters by using the speed
data of the segment in the given time range based on the
pre-trained model.
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Figure 2. Prediction performance on the 2nd ring road with varying period lengths (Scenario I).
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Figure 3. Prediction performance on the 3rd ring road with varying period lengths (Scenario I).

IV. EXPERIMENTS

A. Data Description

In our experiments, we tested eRCNN over two very
important roads in the Beijing city, i.e., the 2nd ring road
and the 3rd ring road. These two roads encircle the center
of Beijing. According to the Beijing Municipal Commission
of Transport1, the average traffic flow carried by the two
roads goes beyond 200,000 cars every day, which occupies
about 10% of the total traffic flow in Beijing downtown area.
The length of the 2nd and 3rd ring roads are 32 and 48
km, respectively. We set the average length of each road
segment to be 400 meters, which results in 80 and 122
road segments for the two roads. Moreover, the traffic speed
of a road segment is collected from the GPS terminals of
taxis driving on the segment [9], [10]. In the data collecting
process, the traffic speed of a segment is updated every 5
minutes. The data set used in this experiment was collected
from the 25 weekdays in November 2013. The data of the
first 20 weekdays were used as the training set, and the
remaining five days as the test set.

B. Benchmarks

We compared the performance of our model with the fol-
lowing benchmarks methods: 1) Auto Regression Integrated

1http://www.bjjtw.gov.cn/

Moving Average (ARIMA) [1]. 2) Support Vector Regres-
sion (SVR) [11]. 3) Stacked Auto Encoders (SAE) [5]. 4)
1D Convolutional Neural Network (1D-CNN). The network
structure of the 1D-CNN is the same as the CNN part of
eRCNN, but the input matrix reduces to the time series of
the traffic speeds of the segment to be predicted. 5) Con-
volutional Neural Network (CNN). The network structure
of the CNN benchmark is the same as eRCNN, except the
error feedback procedure is removed. Note that 1D-CNN is
used as benchmark to test the effectiveness of the spatio-
temporal input matrix for eRCNN, and CNN is used to test
the performance of the error feedback scheme of eRCNN.

C. Overall Performance
We compared the performance of eRCNN with the bench-

mark methods in two different experimental scenarios. In
the first scenario, we predict the average traffic speed of a
road segment in a following period, with the length varying
from 5 to 30 minutes. We adopt three widely used metrics
to evaluate the performance of prediction models, including
Mean Absolute Error (MAE), Mean Absolute Percentage
Error (MAPE), and Root Mean Square Error (RMSE).
Fig. 2 and Fig. 3 show the comparative performances of
eRCNN and the benchmarks for the 2nd and 3rd ring roads,
respectively. As shown in the figures, the prediction error of
eRCNN is obviously smaller than ARIMA, SVR, SAE, and
1D-CNN in terms of the three evaluation metrics. Although
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Figure 4. Prediction performance on the 2nd ring road with varying interval lengths (Scenario II).
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Figure 5. Prediction performance on the 3rd ring road with varying interval lengths (Scenario II).

the performance of CNN is comparable to eRCNN, the
prediction error is still greater than eRCNN. Generally we
can see that the prediction performance becomes better when
the length of the prediction period increases. Intuitively, this
may be due to the fact that the traffic speed of a segment
becomes smoother when the average period length increases.
The results indicate that eRCNN can effectively extract
the spatio-temporal features from the traffic speed data of
contiguous road segments, and the introduction of the error-
feedback recurrent layer is indeed positive for eRCNN.

In the second scenario, we aim to predict the traffic speed
of a segment after a given time interval, with the interval
length varying from 0 to 50 minutes. Fig. 4 and Fig. 5
show the prediction errors of eRCNN in comparison with
the benchmarks for the 2nd and 3rd ring roads, respectively.
As shown in the figures, eRCNN achieved the best per-
formances compared with other methods. Note that since
the correlation between the traffic speed of two adjacent
periods decreases as the interval increases, the prediction
performances become worse with the increase of the interval
length.

In summary, from the above experimental results, we
find that eRCNN achieves the best performance compared
with the state-of-the-arts. The inclusion of spatio-temporal
information of contiguous segments and the error-feedback
neurons to the network structure is the key for success.

D. Performance for Individual Road Segment

To further demonstrate the advantages of eRCNN, we took
a closer look at the prediction errors of every road segments
with CNN, SAE and SVR as benchmarks. Fig. 6(a) shows
the comparative performances on each segment of the inner
ring (in clockwise direction) of the 2nd ring road. In the
experiment, the prediction period is set as 5 minutes and the
interval is 0 minutes. As depicted in the figure, the prediction
errors for different segments indeed vary greatly. We can see
that for all the prediction methods, the predictability of the
segment #30-#50 is better than other segments in general.
On the contrast, the predictability of segment #7-#15, #20-
#25, and #65-#80 is much poorer.

As shown in the figure, the performances of SAE and
SVR degrade severely for the low predictability segments,
whereas the performances of eRCNN and CNN remain
stable across all the segments. Fig. 6(b) shows the similar
experimental results for the inner ring of the 3rd ring road,
with the same settings to the time period and interval. To
sum up, the results in Fig. 6 indicate the robustness of
eRCNN empowered by the learning scheme from the spatio-
temporal speed matrix of nearby segments.

E. Performance with Time Variation

Here, we study the prediction performances of eRCNN in
different time intervals of a day with substantially different
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Figure 6. Prediction performances across all road segments.
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Figure 7. Traffic speed prediction with time variation.
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Figure 8. CDF of predictive error during 19:00-19:30.

traffic conditions. We select a road segment located in the
inner loop of the 2nd ring road as the targeted sample, and
predict its traffic speeds during the time interval from 18:30
to 21:30 on November 24, 2013. The prediction period is
set as 5 minutes and the interval is set as 0.

Fig. 7 demonstrates the real traffic speed and the predic-
tion results from eRCNN and CNN. As can be seen from
Fig. 7, from 19:00 to 19:30, the traffic recovers from the
last traffic jam of the night peak. While around 20:20, the
traffic speed decreases again due to a small accident, and the
traffic recovers to normal before 21:00. In general, the traffic
speed changes abruptly during both of the two periods.
As can be seen from the figure, our proposed eRCNN
successfully captures the abrupt changes in speeds and the
curve of predictions exactly matches the real values of traffic
speeds, while the CNN model does not effectively follow the
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Figure 9. Illustration of the effectiveness of pre-training.

abrupt changes of traffic speeds. This well demonstrates the
necessity of introducing the error feedback scheme to the
recurrent layer of eRCNN.

To further demonstrate the statistical property of the error-
feedback scheme, Fig. 8 plots the cumulative distribution
functions of the absolute prediction error in the 19:00-
19:30 time period of all the testing days and all the road
segments for eRCNN and CNN, respectively. The prediction
period is 5-min and the intervals are 0-min and 20-min,
respectively. As shown in Fig. 8, the prediction error of
eRCNN is obviously smaller than CNN, which indicates
the great improvements from the error-feedback scheme in
eRCNN, especially when facing traffic fluctuations.

In summary, the experimental results testified the effec-
tiveness of introducing separate error-feedback neurons to
eRCNN when predicting traffic speeds with abrupt changes.

F. Performance with Weight Pre-Training

As discussed in Section III-B, we develop a pre-training
method by clustering the road segments. To evaluate the
effectiveness of this method, we compared the prediction re-
sults of eRCNN under three conditions, i.e., prediction with
pre-training, prediction without pre-training, and prediction
with only pre-training, in the time period between 6:00 to
21:00. We set the prediction period to 5-min and the intervals
to 0-min and 20-min, respectively.

As shown in Fig. 9, the prediction results without pre-
training and with only pre-training fluctuate drastically. Par-
ticularly, during the morning peak (7:00-9:00) and evening



peak (17:00-19:00), the prediction errors for the two cases
are much higher than that of other time periods. Neverthe-
less, the prediction results with pre-training remain stable
across all the time ranges, and the prediction errors are
significantly lower than the other two cases. This well
demonstrates that eRCNN is greatly enhanced by the pre-
training scheme even facing the drastic speed changes during
the morning and evening peaks.

V. IMPORTANCE ANALYSIS FOR ROAD SEGMENTS

In this section, we introduce a very useful application of
our traffic speed prediction model: the importance analysis
for road segments. In order to explain the concept of segment
importance, we first give a formalized definition of the
influence between segments. For a segment j whose traffic
speed is influenced by the traffic speed of the segment i, we
define

vj = f(vi), (24)

where vi and vj are traffic speeds of segment i and j,
respectively. Based on the relations described by Eq. (24),
we define the influence of segment i to segment j as the
derivative of vj to vi, i.e., ∀ ε > 0

Ii(j) =
df(vi)

dvi
= lim

ε→0

f(vi)− f(vi − ε)
ε

. (25)

For the eRCNN model, the network structure is a function
o = f(V), which models the relations between predicted
speed o of a segment and real traffic speeds V of its con-
tiguous segments. Because eRCNN achieved very accurate
prediction performance, we can use ∂o

∂V to approximate
the influence of the contiguous segments to the predicted
segment.

The calculation of ∂o
∂V is given as follows. According to

Eq. (2), in the convolution layer, the partial derivative of the
element (p, q) in the neuron matrix for the k-th filter to the
input matrix V is

∂cp,qk

∂V
= cp,qk (1− cp,qk )W

(C)
k . (26)

In the pooling layer, the partial derivative of the pool output
pi,jk to the matrix V is an average of ∂cp,qk /∂V, i.e.,

∂pi,jk
∂V

=
1

4

2i∑
m=2i−1

2j∑
n=2j−1

∂cm,n
k

∂V
. (27)

The error-feedback recurrent layer contains two kinds of
neurons: the regular neuron and the error-feedback neuron.
For the sake of reducing complexity, we ignore the influence
of error feedback neurons and only consider the regular
neurons. We define an intermediate variable as

∂pk

∂V
=
∑
i

∑
j

w
(R)
i,j,k

∂pi,jk
∂V

, (28)

where w
(R)
i,j,k is the element of w(R) that corresponds to

pi,jk . According to Eq. (3), the complete form of the partial
derivative for a regular recurrent neuron is given by

∂r(R)

∂V
= r(R)(1− r(R))

∑
k

∂pk

∂V
. (29)

We define the partial derivative vector with the N regular
neurons in the recurrent layer as

∂r(R)

∂V
=

[
∂r

(R)
1

∂V
, . . . ,

∂r
(R)
N

∂V

]⊤
. (30)

According the Eq. (8), we obtain the partial derivative of the
output variable o to the input matrix V as

∂o

∂V
= δ(o)w(OR) ∂r

(R)

∂V
. (31)

According to definition of the input matrix V in Eq. (1),
the element (1,1) of ∂o

∂V is ∂os,t+1

∂vs−m,t
, which denotes the

derivative of predicted speed of segment s at time t+ 1 to
the speed of the segment s−m at time t. According to the
definition of segment influence, we approximately calculate
the influence of the segment s−m to s at time t as

Is−m,t(s) =

t−n∑
k=t

∣∣∣∣ ∂os,t+1

∂vs−m,k

∣∣∣∣ . (32)

We define the importance of the segment k as its influence
to all segments in the same road with it, i.e.,

Importancek =
∑
t

∑
s̸=k

Ik,t(s). (33)

According to this definition of segment importance, the seg-
ments with high importance have high influence to the traffic
speeds of other segments. These high important segments
could be considered as sources of traffic congestion.

In order to verify the effectiveness of the above-mentioned
importance analysis method, we again adopt the 2nd and
3rd ring roads as the demonstrative examples. We use 5-
min period and 0-min interval prediction experiment results
to calculate the importance of the inner and outer loop
segments of the two ring roads. The importance of the seg-
ments is demonstrated in the city map of Beijing as shown
in Fig. 10. Obviously, the high important road segments
are mostly located near the corners of the ring roads, for
both of the outer and inner loops. This is possibly because
the entrances and exits of the ring roads are concentrated
near the corners, which also connect other important roads.
For example, the northeastern corner of the two ring roads
connects one of the most important highways to leave
Beijing and also the expressway of Beijing airport, the
northwest corner of the 3rd ring road connects with the
Zhongguancun Street (The silicon valley of China), and the
northwest corner of the 2nd ring road connects with the
North Railway Station. In a nutshell, the results explicitly
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Figure 10. The importance of segments in the 2nd and 3rd ring roads.

detect the key congestion source in the ring roads, which can
help the municipal administrators to make better decision in
urban planning and resolving the traffic congestion.

VI. RELATED WORK

A widely used method for traffic speed prediction is
the autoregressive integrated moving average (ARIMA)
model [1]. After the birth of the BoxCJenkins time-series
analyzing method [12], many ARIMA based variants were
proposed to improve the traffic predicting power [13], [14].

In recent years, great attention is being paid to super-
vised learning methods for traffic prediction. Support vec-
tor regression (SVR) and artificial neural networks (ANN)
are the two kinds of particular interests. For instance, [2]
proposed a SVR based method to predict traffic speed.
[15] proposed an online learning weighted support-vector
regression (OLWSVR) to predict short-term traffic flow. As
to ANN, Ref. [3] applied artificial neural networks to predict
the speeds on two-lane rural highways. [16] proposed a
fuzzy neural network to analyze road traffic. Other learn-
ing based methods include the distribution enhanced linear
regression [17], the hidden Markov model based prediction
method [18], and the Gaussian process-based method [19].
The predictability of road traffic and congestion in urban
areas is studied in [20].

With the booming of deep learning techniques [21], some
ITS researches begin to adopt deep neural network models as
an effective traffic prediction tool. Ma et. al. [22] adopted a
RNN-RBM model to predict congestion evolution in a large-
scale transportation network. [4] proposed a deep belief
network model with shared representation for traffic flow
prediction, while [5] adopted a SAE model for this purpose.

To further enhance predictive performance, involving his-
torical and spatio-temporal information becomes a promising
trend in traffic prediction. For instance, Ref. [23] claimed

that traditional prediction approaches that treat traffic data
streams as generic time series might fail to forecast traffic
during peak hours and in case of events, and proposed the
H-ARIMA+ method to incorporate historical traffic data
for traffic prediction. In [11], spatio-temporal trends were
introduced to the SVR model to facilitate large-scale traffic
speed prediction. In [24], a non-negative matrix factorization
based latent space model was introduced to predict time-
varying traffic in networked roads in a large spatial area.
[25] proposed a tensor based model to predict travel-time
through exploiting spatio-temporal information.

Summary: Despite of the abundant research in traffic
prediction, to our best knowledge, our work is among
the earliest to allow integrating both spatio-temporal and
prediction-error information into deep neural networks for
traffic speed prediction of high accuracy. Moreover, our
study sheds light on how to learn road segment importance
from deep learning models.

VII. CONCLUSION

In this paper, we proposed a novel deep learning method
called eRCNN for traffic speed prediction of high accuracy.
An error-feedback recurrent convolutional neural network is
carefully designed so as to incorporate the spatio-temporal
speed information of contiguous road segments as well
as to perceive the prediction errors stemming from the
abrupt fluctuations of traffic speeds. Experiments on real-
world traffic speed data of the ring roads of Beijing city
demonstrate the advantages of eRCNN to the excellent
competitors. In particular, we illustrate how to explore the
congestion sources from eRCNN.
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